2009 Gene List for Squash

Harry S. Paris
A.R.O., Newe Ya’ar Research Center, Ramat Yishay 30-095 (Israel)

Eileen Kabelka
University of Florida, Gainesville, Fl 32611 (U.S.A.)

The genus Cucurbita L. contains 12 or 13 species (50).  As far as is known, all have a complement of 20 pairs of chromosomes (2n = 40).

This gene list for Cucurbita contains detailed sources of information, being modeled after the one for cucumber presented by Wehner and Staub (103) and its update by Xie and Wehner (109). In order to more easily allow confirmation of previous work and as a basis for further work, information has been included concerning the genetic background of the parents that had been used for crossing.  Thus, in addition to the species involved, the cultivar-group (for C. pepo), market type (for C. maximaC. moschata), and/or cultivar name are included in the description wherever possible.

Genes affecting phenotypic/morphological traits are listed in Table 1. The data upon which are based identifications and concomitant assignment of gene symbols vary considerably in their content.  No attempt is made here to assess the certainty of identifications, but gene symbols have been accepted or assigned only for cases in which at least some data are presented. The genes that are protein/isozyme variants are listed in Table 2. It can be seen from Tables 1 and 2 that approximately 70 genes have been identified for C. pepo L, for C. moschata Duchesne 25 and for C. maxima Duchesne 19. For the interspecific cross of C. maxima × C. ecuadorensis Cutler & Whitaker, 29 genes have been identified, of which 25 are isozyme variants.  A few genes have also been identified in four of the wild species (C. okeechobeensis Bailey, C. lundelliana Bailey, C. foetidissima HBK and C. ecuadorensis) and in several other interspecific crosses.

Some genes are listed as occurring in more than one species.  This does not necessarily indicate that these genes reside at identical locations in the genome of different species.

New additions to the list of Cucurbita genes include a number of omissions as well as a number of new genes published after the last update.  Those that had been omitted are three unnamed genes for fruit bitterness (3). They are herein designated Bitter fruit-1-2, and -3, symbols Bi-1, Bi-2, and Bi-3. This has necessitated the modification of the symbols for the two previously identified genes (12, 30, 32) for Bitter fruit as Bimax and Bi-0.  Newly identified genes that have been published since the last update are: ae (androecy enhancer), Crr-1, Crr-2, and Crr-3 (Crown rot resistance-1, -2, and -3), gl-2 (glabrous-2), and l-2R (light type-2 Reverse striping). The symbols ae, Crr-1, Crr-2, and Crr-3 are herein assigned for the first time. Before choosing a gene name and symbol, researchers are urged to consult this Gene List as well as the rules of Gene Nomenclature for the Cucurbitaceae that appears near the end of this Cucurbit Genetics Cooperative Report in order to avoid confusion arising from duplication of gene names and symbols. Please contact us if you find omissions or errors in this Gene List.

Several cases of genetic linkage have been reported: D – mo-2 (61) and M – Wt (C. pepo) (72) and Bi – Lo-2 (C. ecuadorensis × C. maxima) (32). Some of the isozyme variants observed by Weeden & Robinson (102) were also found to be linked to one another. RAPD markers have been categorized and organized into linkage groups and are not listed here but can be found in Brown and Myers (5) and Zraidi and Lelley (111). These two maps cannot be easily compared, as they were constructed using different mapping populations; RAPD markers are population-specific. Neither map gives complete coverage of the Cucurbita genome. Both maps contain morphological traits, either as single genes or as quantitative trait loci (QTLs), which are listed in Table 3. More recently, a map for Cucurbita pepo has been constructed using RAPDs, AFLPs, and SSRs (27, 113). Over 300 markers were mapped, with coverage of some 2,200 cM of the genome, 20 linkage groups and a map density of 2.9 cM.

Sequenced genes can be valuable to breeders and geneticists, as the differences in the gene sequences that result in the phenotypes of interest can be used in marker-assisted selection. Unlike random markers, these gene-specific, allele-specific markers are completely linked to the genes of interest. Most of the genes sequenced in Cucurbita have been isolated by researchers doing comparative studies of specific genes across plant families; usually only a single allele is available. Nonetheless, we have included a list of the sequenced genes as Table 4 because the sequences could be useful as a starting point for breeders interested in isolating the genes from lines of differing phenotype. In addition to the genes listed here, there exists a collection of partial sequences from mRNA for genes differentially expressed during seed development in C. pepo. These expressed sequence tags were identified in a study of the naked seed trait. The Gene Accession numbers for these sequences are CD726806 through CD726832.

Table 1.  Phenotypic/Morphological Characteristics

Gene Symbol

Character

Species

Reference(s)

Preferred

Synonym

a   androecious.  Found in ‘Greckie’; produces only male flowers, recessive to A. pepo 41
ae*   androecy enhancer. From cross between two vegetable-marrow cultivars, the strongly male ‘Vegetable Spaghetti’,  ae/ae , and ‘Bolognese’, Ae/Ae. pepo 48
B   Bicolor. Precocious yellow fruit pigmentation; pleiotropic, affecting fruit and foliage, modified by Ep-1Ep-2 and Ses-B.  Originally from ‘Vaughn’s Pear Shaped’ ornamental gourd. B in C. moschata‘Precocious PI 165561’ derived from C. pepo through backcrossing. Complementary to L-2 for intense orange, instead of light yellow, fruit-flesh color. pepo, moschata 57, 74, 84, 91, 93
Bmax B-2 Bicolor. Precocious yellow fruit pigmentation, from subsp. andreana PI 165558 maxima 92, 95
Bimax* Bi Bitter fruit. High cucurbitacin content in fruit.  Bi from C. maxima subsp. andreana and C. ecuadorensisbi from C. maxima subsp. maxima, including ‘Queensland Blue’.  Linked to Lo-2. maxima, maxima × ecuadorensis 12, 32
Bi-0 * Bi Bi-0 from wild Texan gourd; bi-0 from zucchini squash. Might be identical with either Bi-1 or Bi-2. pepo 30
Bi-1 *   In cross of C. pepo ×C. argyrosperma, three complementary dominant alleles are needed for bitterness. Bi-1 from C. pepo straightneck ‘Goldbar’, bi-1 from C. argyrosperma ‘Green Striped Cushaw’. pepo × argyrosperma 3
Bi-2 *   In cross of C. pepo ×C. argyrosperma, three complementary dominant alleles are needed for bitterness. Bi-2 from C. pepo straightneck ‘Goldbar’, bi-2 from C. argyrosperma ‘Green Striped Cushaw’. pepo × argyrosperma 3
Bi-3 *   In cross of C. pepo ×C. argyrosperma, three complementary dominant alleles are needed for bitterness. Bi-3 from C. argyrosperma ‘Green Striped Cushaw’, bi-3 from C. pepo straightneck ‘Goldbar’. pepo × argyrosperma 3
bl   blue fruit color. Incompletely recessive to Bl forgreen fruit color, in hubbard squash. maxima 33
Bn   Butternut fruit shape, from ‘New Hampshire Butternut’, dominant to bn for crookneck fruit shape, as in ‘Canada Crookneck’. moschata 52
Bu D Bush habit.  Short internodes; dominant to vine habit, bu, in young plant stage.  In C. pepoBu in ‘Giant Yellow Straightneck’ and near-isogenic line of ‘Table Queen’, bu in ‘Table Queen’ acorn.  In C. maximaBu from inbred line, bu from ‘Delicious’. In C. moschataBu from inbred line, bu from undisclosed parent. pepo, maxima, moschata 18, 31, 90, 106
Cmv Cucumber mosaic virus resistance, from Nigerian Local.  Dominant to cmv for susceptiblity, from ‘Waltham Butternut’. moschata 4
cr   cream corolla.  Cream to nearly white petals, cr from C. okeechobeensisCr from C. moschata‘Butternut’ incompletely dominant (yellow petals for Cr/cr, and orange for Cr/Cr) moschata × okeechobeensis 81
Crr-1*   Crown rot resistance. Resistance to Phytophthora capsici, introgressed from C. lundelliana and C. okeechobeensis subsp. okeechobeensis into a breeding line of C. moschata. One of three complementary dominant genes for resistance. Genotype of the susceptible C. moschata ‘Butterbush’ is crr-1/crr-1. moschata 56
Crr-2*   Crown rot resistance. Resistance to Phytophthora capsici, introgressed from C. lundelliana and C. okeechobeensis subsp. okeechobeensis into a breeding line of C. moschata, One of three complementary dominant genes for resistance. Genotype of the susceptible C. moschata ‘Butterbush’ is crr-2/crr-2. moschata 56
Crr-3*   Crown rot resistance. Resistance to Phytophthora capsici, introgressed from C. lundelliana and C. okeechobeensis subsp. okeechobeensis into a breeding line of C. moschata. One of three complementary dominant genes for resistance. Genotype of the susceptible C. moschata ‘Butterbush’ is crr-3/crr-3. moschata 56
cu   cucurbitacin-B reduced; cu for reduced cucurbitacin-B content of cotyledons of ‘Early Golden Bush Scallop’; Cu for high cucurbitacin content of cotyledons of ‘Black Zucchini’. pepo 89
D   Dark stem.  Series of three alleles observed in C. pepoD for dark stem and dark intermediate-age fruit, Ds for dark stem but fruit not affected, and d for light stem and fruit not affected, with dominance D > Ds > d.  D from ‘Fordhook Zucchini’, Ds from ‘Early Prolific Straightneck’; d from ‘Vegetable Spaghetti’. Epistatic to genes l-1 and l-2 when either is homozygous recessive; linked to mo-2.  In C. maxima, only the fruit was observed: D for dark intermediate-age fruit from the zapallito ‘La Germinadora’; d for light intermediate-age fruit from a variant zapallito breeding stock. pepo, maxima 26, 45, 60, 61, 64, 73, 86
de   determinate plant habit; stem lacking tendrils and terminating with female flowers.  Recessive to Defor indeterminate plant habit.  De from ‘Jeju’ and ‘Sokuk’, de from inbred designated “Det”. moschata 42
Di   Disc fruit shape.  From scallop squash, dominant to spherical or pyriform. pepo 97, 104
Ep-1   Extender of pigmentation-1; modifier of B.  Ep-1 incompletely dominant to ep-1 and additive with Ep-2.  Ep-1 from ‘Small Sugar 7 × 7’ pumpkin; ep-1 from ‘Table King’ acorn. pepo 96
Ep-2   Extender of pigmentation-2; modifier of B.  Ep-2 incompletely dominant to ep-2 and additive with Ep-1.  Ep-2 from ‘Table King’ acorn; ep-2 from ‘Small Sugar 7 × 7’ pumpkin. pepo 96
Fr   Fruit fly (Dacus cucurbitae) resistance. Fr from ‘Arka Suryamukhi’, dominant to fr forsusceptibility. maxima 53
fv   fused vein. Fusion of primary leaf veins, subvital male gametophyte; found in hull-less-seeded pumpkin breeding line. pepo 8, 9
G a, m Gynoecious sex expression; dominant to g for monoecious sex expression. foetidissima 19, 24
Gb   Green band on inner side of base of petal, from a scallop squash; dominant to gb, for no band, from a straightneck squash. pepo 20
gc   green corolla.  Green, leaf-like petals, sterile; in unspecified F2 population. pepo 99
gl-1*   gl glabrous, lacking trichomes maxima 37
gl-2   glabrous, lacking trichomes; gl-2 mutant found in straightneck squash pepo 108
Gr G Green rind. Dominant to buff skin of mature fruit.  Gr from ‘Long Neapolitan’, gr from ‘Butternut’. moschata 77
grl   gray leaf. Recessive to green leaf.  Recessive grl derived from cross of  zapallito-type line of C. maxima and a butternut-type line of C. moschata.  Dominant Grl from zapallito-type C. maxima. maxima × moschata 44
Hi   Hard rind inhibitor.  Hi, for hard-rind inhibition, from C. maxima ‘Queensland Blue’; hi, for no hard-rind inhibition, from C. ecuadorensis. maxima × ecuadorensis 30
Hr   Hard rind. Hr for hard (lignified) rind inornamental gourd, straightneck squash, and zucchini; hr for soft (non-lignified) rind in ‘Small Sugar’ pumpkin and ‘Sweet Potato’ (‘Delicata’).  Complementary to Wt for Warty fruit. pepo 47, 85
i   intensifier of the cr gene for cream flowers.  Cr/__ I/__ for intense orange or yellow flowers, Cr/__ i/ifor light orange or yellow flowers, cr/cr I/__ for cream flowers, cr/cr i/i for white flowers.  I from C. moschata ‘Butternut’, i from C. okeechobeensis. moschata × okeechobeensis 81
I-mc Imc Inhibitor of mature fruit color; dominant to i-mc for no inhibition. I-mc in a scallop squash. pepo 10
I-T   Inhibitor of the T gene for trifluralin resistance.  I-T from ‘La Primera’; i-t from ‘Ponca’ and ‘Waltham Butternut’. moschata 1
l-1 c, St light fruit coloration-1. Light intensity of fruit coloration. Series of five alleles observed in C. pepowhich, in complementary interaction with the dominant L-2 allele, give the following results: L-1 for uniformly intense/dark fruit coloration, from ‘Fordhook Zucchini’; l-1BSt for broad, contiguous intense/dark stripes, from ‘Cocozelle’; l-1St for narrow, broken intense/dark stripes, from ‘Caserta’; l-1iSt for irregular intense/dark stripes, from ‘Beirut’ vegetable marrow; l-1 for light coloration, from ‘Vegetable Spaghetti’, with dominance of L-1 > (l-1BSt > l-1St) ≥ l-1iSt > l-1. In C. maximaL-1 from the zapallito ‘La Germinadora’; l-1 from a variant zapallito breeding stock. pepo, maxima 26, 45, 62, 67, 63, 67, 73, 82, 91
l-2 r light fruit coloration-2. Light intensity of fruit coloration. Series of four alleles observed in C. pepo, which, in complementary interaction with dominant alleles at the l-1 locus, give the following results: L-2 for intense/dark fruit coloration, with L-1 from ‘Fordhook Zucchini’ and intense/dark fruit stripes, with l-1BSt from ‘Cocozelle’; allele L-2w has delayed and weaker effect than L-2, from C. pepo subsp. fraternal-2R confers reversal of color, that is, stripes lighter than the background in combination with any of the striping alleles at the l-1 locus, or completely light fruit in the presence of L-1, from C. peposubsp. texana ‘Delicata’; l-2 for light coloration, from ‘Vegetable Spaghetti’, with dominance of L-2 > L-2w > l-2. Dominant L-2 is also complementary with B for intense orange, instead of light yellow, fruit-flesh color and with recessive qi for intense exterior color of young fruit. In C. maximaL-2 from the zapallito ‘La Germinadora’; l-2 from a variant zapallito breeding stock. pepo, maxima 26, 45, 57, 65, 68, 69, 73
lo-1 l lobed leaves-1; recessive to Lo-1 for non-lobed leaves maxima 21
Lo-2   Lobed leaves-2Lo-2 for lobed leaves in C. ecuadorensis dominant to lo-2 for unlobed leaves in C. maxima. Linked to Bi. ecuadorensis × maxima 32
lt   leafy tendril. Tendrils with laminae; lt found in ornamental gourd. pepo 83
ly   light yellow corolla. Recessive to orange yellow; ly found in ornamental gourd. pepo 83
M   Mottled leaves.  M for silver-gray areas in axils of leaf veins, dominant to m for absence of silver-gray.   For C. maximaM in ‘Zuni’ and m in ‘Buttercup’ and ‘Golden Hubbard’. For C. pepoM in ‘Caserta’ and inbred of ‘Striato d’Italia’ cocozelle; m in ‘Early Prolific Straightneck’ and ‘Early Yellow Crookneck’. For C. moschataM in ‘Hercules’ and ‘Golden Cushaw’, m in butternut type. Weakly linked to Wt. pepo, maxima, moschata 14, 66, 82, 87
Mldg   Mottled light and dark green immature fruit color; germplasm unspecified. Dominant to mldg for non-mottled. moschata 6
mo-1   mature orange-1; complementary recessive gene for loss of green fruit color prior to maturity.  Mo-1from ‘Table Queen’ acorn; mo-1 from ‘Vegetable Spaghetti’. pepo 61
mo-2   mature orange-2; complementary recessive gene for loss of green fruit color prior to maturity.  Mo-2from ‘Table Queen’ acorn; mo-2 from ‘Vegetable Spaghetti’.  Linked to D. pepo 61
ms-1 ms1 male sterile-1. Male flowers abort before anthesis, derived from a cross involving ‘Golden Hubbard’, recessive to Ms-1 for male fertile. maxima 88
ms-2 ms2 male sterile-2. Male flowers abort, sterility expressed as androecium shrivelling and turning brown; ms-2 from ‘Eskandarany’ (PI 228241). pepo 23
ms-3 ms-2 male sterile-3. maxima 39
m-zymmos   modifier of dominance of zucchini yellow mosaic virus resistance; confers resistance to otherwise susceptible Zymmos/zymmos heterozygotes. M-zymmos in ‘Soler’, m-zymmos in ‘Waltham Butternut’ and ‘Nigerian Local’. moschata 55
n h naked seeds.  Lacking a lignified seed coat, n from oil-seed pumpkin. pepo, moschata 29, 86, 107, 112, 113
pl   plain light fruit color, pl from ‘Beirut’ vegetable marrow and ‘Fordhook Zucchini’; Pl in ‘Vegetable Spaghetti’. pepo 58
Pm   Powdery mildew resistance.  Resistance to Podosphaera xanthii; Pm from C. lundelliana. lundelliana 13, 70
Pm-0   Powdery mildew resistance. Resistance to Podosphaera xanthiiPm-0 from C. okeechobeensis and in C. pepo. okeechobeensis, pepo 11, 37
pm-1   powdery mildew resistance in C. moschata. Series of three alleles: pm-1P for susceptibility from ‘Ponca’ dominant to pm-1L for resistance from ‘La Primera’, which is dominant to pm-1W for susceptibility in ‘Waltham Butternut’. moschata 2
pm-2   powdery mildew resistance in C. moschata ‘Seminole’, recessive to Pm-2 for susceptibility moschata 2
prv   papaya ringspot virus resistance, in Nigerian Local, recessive to Prv for susceptibility, in ‘Waltham Butternut’. moschata 4
qi   quiescent intense.  Recessive to Qi for not intense and complementary to L-2 for intense young fruit color; little or no effect on mature fruit. Qi from ‘Vegetable Spaghetti’; qi from ‘Jack O’Lantern’ pumpkin and ‘Verte non-coureuse d’Italie’ cocozelle. pepo 63, 66
Rd   Red skin. Red external fruit color; dominant to green, white, yellow and gray. Rd from ‘Turk’s Cap’; rdfrom ‘Warted Hubbard’. maxima 46
ro   rosette  leaf.  Lower lobes of leaves slightly spiraled, ro derived from an ornamental gourd. pepo 47
s-1 s sterile. Male flowers small, without pollen; female flower sterile.  Derived from crossing ‘Greengold’ with ‘Banana’. maxima 34
s-2   sterile.  Male flowers small, without pollen and female flower sterile; mutant in powdery mildew resistant, straightneck squash breeding line. pepo 7
Ses-B   Selective suppression of gene B. Suppression in foliage of precocious yellowing conferred by BSes-Bin straightneck breeding line dominant to ses-B in ‘Jersey Golden Acorn’. pepo 94
sl   silverleaf resistance.  Recessive to Sl for susceptibility. In C. moschataSl from ‘Soler’; sl from PI 162889 and butternut types. In C. pepoSl from ‘Black Beauty’ zucchini and sl from Zuc76 breeding line. moschata, pepo 28, 110
slc   Squash leaf curl virus resistance; derived from C. moschata. pepo 50
sp   spaghetti flesh, breaking into strands after cooking pepo 49
T   Trifluralin resistance.  Dominant to susceptibility to the herbicide; modified by I-T.  T in ‘La Primera’; t in ‘Ponca’ and ‘Waltham Butternut’. moschata 1
uml   umbrella-like; leaves shaped like partially opened umbrella. Recessive uml derived from a cross of C. maxima ‘Warzywna’ and a C. pepo inbred; dominant Uml from ‘Warzywna’. maxima × pepo 75
v   virescent. Yellow-green young leaves, v found in ‘Golden Delicious’. maxima 22
W   Weak fruit coloration.  Dominant to w for intense-pigmented mature fruit; W from scallop squash. Complementary to Wf for white external fruit color. pepo 59, 91, 97
wc   white corolla.  Derived from ‘Ispanskaya’ × ‘Emerald’.  Recessive to Wc for normal orange-yellow corolla maxima 40
Wf   White flesh. Dominant to wf for colored flesh.  Wf in a scallop squash, wf in a straightneck squash. Complementary to W for white external fruit color. pepo 20, 59, 97
Wmv   Watermelon mosaic virus resistance.  From “Menina” and “Nigerian Local”, dominant to wmv for susceptibility in ‘Musquée de Provence’ and ‘Waltham Butternut’. May be linked with or identical to Zym-1. moschata 4, 24
Wmvecu   Watermelon mosaic virus resistance. From C. ecuadorensis, in a cross with an unspecified C. maxima. maxima x ecuadorensis 95
Wt   Warty fruit. Dominant to non-warted, wt, and complementary to Hr, with fruit wartiness being expressed only in the presence of the dominant Hr allele. Wt in straightneck, crookneck, and ‘Delicata’; wt in zucchini, cocozelle, and ‘Small Sugar’ pumpkin.  Weakly linked to M. pepo 66, 79, 97
wyc   white-yellow corolla; isolated in ‘Riesen-Melonen’.  Recessive to Wyc for normal orange-yellow corolla. maxima 40
Y   Yellow fruit color. Y for yellow fruit color of intermediate-age fruits, from straightneck and crookneck squash, dominant to y for green intermediate-age fruit color, from vegetable marrow, ornamental gourd, and cocozelle. pepo 72, 82, 90, 91, 97
yg   yellow-green leaves and stems maxima 39
Ygp   Yellow-green placenta. Dominant to yellow placental color.  Ygp in a scallop squash, ygp in a straightneck squash. pepo 20
ys   yellow seedling. Lacking chlorophyll; lethal pepo 47
zymecu   zucchini yellow mosaic virus resistance, recessive to susceptibility; zymecu from C. ecuadorensisZymecu from C. maxima ‘Buttercup’. ecuadorensis 80
zymmos   zucchini yellow mosaic virus resistance, recessive to susceptibility; zym?mos from ‘Soler’, Zymmos from ‘Waltham Butternut’. moschata 55
Zym-0   Zucchini yellow mosaic virus resistance.  Zym-0 from C. moschata ‘Nigerian Local’ dominant to zym-0for susceptibility from ‘Waltham Butternut’. Perhaps one of two separate genes for resistance in ‘Nigerian Local’. moschata 4, 47, 55
Zym-1   Zucchini yellow mosaic virus resistance. Zym-1 from C. moschata ‘Menina’dominant to zym-1forsusceptibility from C. moschata ‘Waltham Butternut’.  Zym-1 transferred via backcrossing to C. pepo ‘True French’ zucchini, in which it confers resistance through complementary interaction with Zym-2 and Zym-3Zym-1 is either linked with Wmv or also confers resistance to watermelon mosaic virus. moschata, pepo 24, 55, 70, 71
Zym-2   Zucchini yellow mosaic virus resistance-2.  Dominant to susceptibility and complementary to Zym-1.  Zym-2 from C. moschata ‘Menina’. Zym-2 in C. pepo derived from C. moschata, in near-isogenic resistant line of ‘True French’ zucchini; zym-2 from C. pepo ‘True French’. moschata, pepo 70
Zym-3   Zucchini yellow mosaic virus resistance-3.  Dominant to susceptibility and complementary to Zym-1.  Zym-3 from C. moschata ‘Menina’. Zym-3 in C. pepo derived from C. moschata, in near-isogenic resistant line of ‘True French’ zucchini; zym-3 from C. pepo ‘True French’. moschata, pepo 70

*Proposed new gene symbol.

Table 2. Isozyme Variants

Gene Symbol

 

Character

Species

Reference(s)

Preferred

Synonym

No. alleles observed

Aat-1 Aat 8 Aspartate aminotransferase-1. Variant among accessions. pepo 17, 36
Aat-3   2 Aspartate aminotransferase-3.  Variant among wild populations. pepo 17
Aat-4   3 Aspartate aminotransferase-4.  Variant  among wild populations. pepo 17
Aat-mb   2 Aspartate aminotransferase – microbody maxima x ecuadorensis 102
Aat-m1   2 Aspartate aminotransferase mitochondria-1 maxima x ecuadorensis 102
Aat-m2   2 Aspartate aminotransferase mitochondria-2 maxima x ecuadorensis 102
Aat-p2   2 Aspartate aminotransferase plastid-2 maxima x ecuadorensis 102
Acp-1   2 Acid phosphatase-1 maxima x ecuadorensis 102
Acp-2   2 Acid phosphatase-2 maxima x ecuadorensis 102
Adh   2 Alcohol dehydrogenase pepo 105
Aldo-p   2 Aldolase – plastid maxima x ecuadorensis 101
Est-1 Est 2 Esterase maxima x ecuadorensis 100, 102
Gal-1   2 b-galactosidase-1 maxima x ecuadorensis 102
Gal-2   2 b-galactosidase-2 maxima x ecuadorensis 102
G2d-1   3 Glycerate dehydrogenase-1. Variant among wild populations. pepo 17
G2d-2   2 Glycerate dehydrogenase-2. Variant among wild populations. pepo 17
Got-1   5 Glutamine oxaloacetate-1. Variant among accessions, wild populations, and among Cucurbita species. pepo 15, 16, 38, 105
Got-2   3 Glutamine oxaloacetate-2. Variant among species. maxima x ecuadorensis 102
Gpi   2 Glucosephosphate isomerase.  Variant among accessions. pepo 36
Gpi-3   2 Glucosephosphate isomerase-3.  Variant among wild populations. pepo 17
Gpi-c1   2 Glucosephosphate isomerase cytosolic-1 maxima x ecuadorensis 102
Gpi-c2   2 Glucosephosphate isomerase cytosolic-2 maxima x ecuadorensis 102
Idh-1   4 Isocitrate dehydrogenase-1.  Variant among accessions, wild populations, and Cucurbita species. pepo 15, 16, 17, 38, 105
Idh-2   2 Isocitrate dehydrogenase-2. Variant among accessions, wild populations, and Cucurbita species. pepo 15, 16, 17, 38, 105
Idh-3   2 Isocitrate dehydrogenase-3. Variant among accessions and populations. pepo 15, 16, 17, 38
Lap-1 Lap 4 Leucine aminopeptidase. Variant among C. pepo accessions. maxima x ecuadorensispepo 17, 36, 100, 102
Mdh-1 Mdh 7 Malate dehydrogenase. Variant among accessions. pepo 36
Mdh-2   3 Malate dehydrogenase-2. Variant among accessions, wild populations, and Cucurbitaspecies. pepo 15, 16, 17, 38, 105
Mdh-3   3 Malate dehydrogenase-3. Variant among accessions, wild populations, and Cucurbitaspecies. pepo 15, 16, 17, 38, 105
Mdh-m1   2 Malate dehydrogenase mitochondria-1 maxima x ecuadorensis 102
Mdh-m2   2 Malate dehydrogenase mitochondria-2 maxima x ecuadorensis 102
Mdh-c2   2 Malate dehydrogenase cytosolic-2 maxima x ecuadorensis 102
Per-1   2 Peroxidase-1 maxima x ecuadorensis 102
Per-2   3 Peroxidase-2.  Variant among accessions and wild populations. pepo 15, 16, 38
Per-3   2 Peroxidase-3 maxima x ecuadorensis 102
Pgi-1   2 Phosphoglucase isomerase-1 pepo 15
Pgi-2   2 Phosphoglucase isomerase-2. Variant among Cucurbita species. pepo 15, 38, 105
Pgi-3   4 Phosphoglucase isomerase-3. Variant among accessions, wild populations, and Cucurbita species. pepo 15, 16, 38, 105
Pgm-1 Pgm 2 Phosphoglucomutase.  Variant among accessions. pepo 36
Pgm-2   4 Phosphoglucomutase-2. Variant among accessions, wild populations, and Cucurbitaspecies. pepo 15, 16, 38, 105
Pgm-5   2 Phosphoglucomutase-5. Variant among wild populations. pepo 17
Pgm-6   2 Phosphoglucomutase-6. Variant among wild populations. pepo 17
Pgm-c2   2 Phosphoglucomutase cytosolic-2 maxima x ecuadorensis 102
Pgm-p   2 Phosphoglucomutase plastid maxima x ecuadorensis 102
Skd-1   6 Shikimate dehydrogenase. Variant among wild populations. pepo 17
Skdh   5 Shikimate dehydrogenase. Variant among C. pepo accessions. maxima x ecuadorensispepo 36, 102
Sod-1   2 Superoxide dismutase-1 maxima x ecuadorensis 102
Tpi-c2   2 Triosephosphatase isomerase cytosolic-2 maxima x ecuadorensis 102
Tpi-p2   2 Triosephosphatase isomerase plastid-2 maxima x ecuadorensis 102

Table 3. Mapped Phenoypic/Morphological Characteristics

Trait

Symbol

Linked Marker(s)

Recombination Distance (cM)

Reference(s)

Precocious yellow fruit B I10_1700 27.1 5
Bush growth habit Bu CMTp131 7.8 27
Dwarf Bu S1225_548, SCAR3_398 2.29 43
Leaf Mottle M H14_600
U489_1200
13.0
16.3
5
Seed Coat n AK11_340 4.4 111
Hull-less seed n CMTp58, CMTp151, CMTm115, CMTm239 1.5 – 3.6 27
Mature Fruit Color [none given] G17_700 9.7 5
Fruit Length (QTL) AE07_165, AC10_490, AJ20_420, P13_750, J01_600, AO20_1200, T08_460, AB08_540, AE09_1600 111
Fruit Width (QTL) AE07_165, AJ20_420, AM10_950, AG08_440 111
Fruit Length/width Ratio (QTL) AE07_165, AC10_490, AJ20_420, P13_750, J01_600 111
No. of Fruit Chambers (QTL) P13_950, AE08_470 111
Leaf Indentation (QTL) F10_400, K11_950, G2_400 5
Fruit Shape (QTL) F8_1050, B8_900, H19_500 5

Literature Cited in text and Tables 1, 2, and 3

  1. Adeniji, A.A. and D.P. Coyne. 1981. Inheritance of resistance to trifluralin toxicity in Cucurbita moschata Poir.  HortScience 16: 774–775.
  2. Adeniji, A.A. and D.P. Coyne. 1983. Genetics and nature of resistance to powdery mildew in crosses of butternut with calabaza squash and ‘Seminole Pumpkin’.  J. Amer. Soc. Hort. Sci. 108: 360–368.
  3. Borchers, E.A. and R.T. Taylor. 1988. Inheritance of fruit bitterness in a cross of Cucurbita mixta × C. pepo.  HortScience 23: 603–604.
  4. Brown, R.N., A. Bolanos-Herrera, J.R. Myers, and M.M. Jahn. 2003. Inheritance of resistance to four cucurbit viruses in Cucurbita moschata.  Euphytica 129: 253–258.
  5. Brown, R.N. and J.R. Myers. 2002. A genetic map of squash (Cucurbita sp.) with randomly amplified polymorphic DNA markers and morphological markers.  J. Amer. Soc. Hort. Sci. 127: 568–575.
  6. Cardosa, A.I.I., P.T. Della Vecchia, and N. Silva. 1993. Inheritance of immature fruit color in C. moschata.  Cucurbit Genet. Coop. Rep. 16: 68–69.
  7. Carle, R.B. 1997. Bisex sterility governed by a single recessive gene in Cucurbita pepo.  Cucurbit Genet. Coop. Rep. 20: 46–47.
  8. Carle, R.B. and J.B. Loy. 1996. Genetic analysis of the fused vein trait in Cucurbita pepo L.  J. Amer. Soc. Hort. Sci. 121: 13–17.
  9. Carle, R.B. and J.B. Loy. 1996. Fused vein trait in Cucurbita pepo L. associated with subvitality of the male gametophyte.  J. Amer. Soc. Hort. Sci. 121: 18–22.
  10. Clayberg, C.D. 1992. Reinterpretation of fruit color inheritance in Cucurbita pepo L.  Cucurbit Genet. Coop. Rep. 15: 90–92.
  11. Cohen, R., A. Hanan, and H.S. Paris. 2003. Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo).  Euphytica 130: 433–441.
  12. Contardi, H.G. 1939. Estudios geneticos en Cucurbita y consideraciones agronomicas.  Physis 18: 331–347.
  13. Contin, M. 1978. Interspecific transfer of powdery mildew resistance in the genus Cucurbita. Ph.D. Thesis, Cornell Univ., Ithaca, New York.
  14. Coyne, D.P. 1970. Inheritance of mottle-leaf in Cucurbita moschata Poir. HortScience 5: 226–227.
  15. Decker, D.S. 1985. Numerical analysis of variation in Cucurbita pepo.  Econ. Bot. 39: 300–309.
  16. Decker, D.S. and H.D. Wilson. 1987. Allozyme variation in the Cucurbita pepo complex: C. pepo var. ovifera vs. C. texana.  Syst. Bot. 12: 263–273.
  17. Decker-Walters, D.S., T.W. Walters, C.W. Cowan, and B.D. Smith. 1993. Isozymic characterization of wild populations of Cucurbita pepo.  J. Ethnobiol. 13: 55–72.
  18. Denna, D.W. and H.M. Munger. 1963. Morphology of the bush and vine habits and the allelism of the bush genes in Cucurbita maxima and C. pepo squash.  Proc. Amer. Soc. Hort. Sci. 82: 370–377.
  19. Dossey, B.F., W.P. Bemis, and J.C. Scheerens. 1981. Genetic control of gynoecy in the buffalo gourd.  J. Hered. 72: 355–356.
  20. Dutta, L.P. and P. Nath. 1972. Inheritance of flower and fruit characters in squash, Cucurbita pepo L.  3rd Intl. Symp. Sub-Trop. Trop. Hort., pp. 69–74.
  21. Dyutin, K.E. 1980. Spontaneous mutant of Cucurbita maxima Duch. squash with lobed leaves.  Genetika 16: 176–178 (Russian).
  22. Dyutin, K.E. and E.A. Afanas’eva. 1981. Inheritance of the yellow-green color of young leaves of the squash Cucurbita maxima Duch.  Tsitologiya i Genetika 15(5): 81–82 (Russian).
  23. Eisa, H.M. and H.M. Munger. 1968. Male sterility in Cucurbita pepo.  Proc. Amer. Soc. Hort. Sci. 92: 473–479.
  24. Fulks, B.K., J.C. Scheerens, and W.P. Bemis. 1979. Sex expression in Cucurbita foetidissima HBK.  Cucurbit Genet. Coop. Rep. 2: 36.
  25. Gilbert-Albertini, F., H. Lecoq, M. Pitrat, and J.L. Nicolet. 1993. Resistance of Cucurbita moschata to watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus.  Euphytica 69: 231–237.
  26. Globerson, D. 1969. The inheritance of white fruit and stem color in summer squash, Cucurbita pepo L.  Euphytica 18: 249–255.
  27.   Gong, L., G. Stift, R. Kofler, M. Pachner and T. Lelley. 2008. Microsatellites for the genus Cucurbita and an                    SSR-based genetic linkage map of Cucurbita pepo L. Theor. Appl. Genet. 117: 37–48.
  28. Gonzalez-Roman, M. and L. Wessel-Beaver. 2002. Resistance to silverleaf disorder is controlled by a single recessive gene in Cucurbita moschata Duchesne.  Cucurbit Genet. Coop. Rep. 25: 49–50.
  29. Grebenš?ikov, I. 1954. Zur Vererbung der Dünnschaligkeit bei Cucurbita pepo L.  Züchter 24: 162–166.
  30. Grebenš?ikov, I. 1955. Notulae cucurbitologicae II. Über Cucurbita texana A. Gr. und ihre Kreuzung mit einer hochgezüchteten C. pepo-Form. Kulturpflanze 3: 50–59.
  31. Grebenš?ikov, I. 1958. Notulae cucurbitologicae III. Kulturpflanze 6: 38–60.
  32. Herrington, M.E. and J.P. Brown. 1988. Inheritance of leaf and fruit characteristics in Cucurbita maxima Duch. cv. Queensland Blue x C. ecuadorensis Cutler and Whitaker.  Queensl. J. Agr. Anim. Sci. 45: 45–48.
  33. Hutchins, A.E. 1935. The interaction of blue and green color factors in hubbard squash.  Proc. Amer. Soc. Hort. Sci. 33: 514.
  34. Hutchins, A.E. 1944. A male and female sterile variant in squash, Cucurbita maxima Duch.  Proc. Amer. Soc. Hort. Sci. 44: 494–496.
  35. Hutton, M.G. and R.W. Robinson. 1992. Gene list for Cucurbita spp.  Cucurbit Genet. Coop. Rep. 15: 102–109.
  36. Ignart, F. and N.F. Weeden. 1984. Allozyme variation in cultivars of Cucurbita pepo L.  Euphytica 33: 779–785.
  37. Jahn, M., H.M. Munger, and J.D. McCreight. 2002. Breeding cucurbit crops for powdery mildew resistance.  In: R.R. Bélanger, W.R. Bushnell, A.J. Dik, and T.L.W. Carver, Eds., The powdery mildews, a comprehensive treatise, pp. 239–248.  American Phytopathological Society, St. Paul, MN.
  38. Kirkpatrick, K.J., D.S. Decker, and H.D. Wilson. 1985. Allozyme differentiation in the Cucurbita pepo complex: C. pepo var. medullosa vs. C. texana.  Econ. Bot. 39: 289–299.
  39. Korzeniewska, A. 1992. New genes in Cucurbita maxima Duch.  In: R.W. Doruchowski, E. Kozik, and K. Niemirowicz-Szczytt, eds.  Proc. Cucurbitaceae ’92: the 5th Eucarpia Meeting on Cucurbit Genetics & Breeding, pp. 75–78.
  40. Korzeniewska, A. 1996. Two independent loci for white and white-yellow corolla in Cucurbita maxima Duch.  In: M.L. Gomez-Guillamon, C. Soria, J. Cuartero, J. Tores, and R. Fernandez-Munoz, eds.  Proc. Cucurbitaceae Towards 2000: The 6th Eucarpia Meeting on Cucurbit Genetics & Breeding.  Graficas Axarquia, Velez-Malaga, Spain, pp. 78–81.
  41. Kubicki, B. 1970. Androecious strains of Cucurbita pepo L.  Genet. Polon. 11: 45–51.
  42. Kwack, S.N. 1995. Inheritance of determinate growth habit in Cucurbita moschata Poir.  J. Kor. Soc. Hort. Sci. 36: 780–784.
  43.   Li, H., H. Zhang, G. Gong, Y. Li and C. Cui. 2006. Research of molecular markers linked to the dwarf gene in   squash. In: G.J. Holmes, ed. Cucurbitaceae 2006. Universal Press, Raleigh, North Carolina, pp. 133-138.
  44. Lopez-Anido, F., E. Cointry, I. Firpo, S.M. Garcia, and S. Gattuso. 2002. Inheritance of gray leaf color in a material derived from a Cucurbita maxima Duch. × C. moschata Duch. hybrid.  Cucurbit Genet. Coop. Rep. 25: 46–48.
  45. Lopez-Anido, F., V. Cravero, P. Asprelli, E. Cointry, I. Firpo, and S.M. Garcia. 2003. Inheritance of immature fruit color in Cucurbita maxima var. Zapallito (Carrière) Millan.  Cucurbit Genet. Coop. Rep. 26: 48–50.
  46. Lotsy, J.P. 1920. Cucurbita Strijdvragen.  II. Eigen Onderzoekingen.  Genetica 2: 1–21.
  47. Mains, E.B. 1950. Inheritance in Cucurbita pepo.  Papers Mich. Acad. Sci. Arts Letters 36: 27–30.
  48. Manzano, S., V.J. Dominguez, D. Garrido, P. Gomez, and M. Jamilena. 2008. A recessive gene conferring ethylene insensitivty and androecy in Cucurbita pepo. In: M. Pitrat, ed. Proc. Cucurbitaceae 2008: the 9th Eucarpia Meeting on Cucurbit Genetics & Breeding, pp. 563–567.
  49. Mazurek, Z. and K. Niemirowicz-Szczytt. 1992. Inheritance of spaghetti traits in Cucurbita pepo.  In: R.W. Doruchowski, E. Kozik, and K. Niemirowicz-Szczytt, eds.  Proc. Cucurbitaceae ’92: the 5th Eucarpia Meeting on Cucurbit Genetics & Breeding, pp. 70–74.
  50. Montes-Garcia, C.E., S. Garza-Ortega, and J.K. Brown. 1998. Inheritance of the resistance to squash leaf curl virus in Cucurbita pepo L.  In: J.D. McCreight, ed.  Cucurbitaceae ’98: Evaluation and Enhancement of Cucurbit Germplasm.  A.S.H.S., Alexandria, Virginia, pp. 328–330.
  51. Munger, H.M. and R. Provvidenti. 1987. Inheritance of resistance to zucchini yellow mosaic virus in Cucurbita moschata.  Cucurbit Genet. Coop. Rep. 10: 80–81.
  52. Mutschler, M.A. and O.H. Pearson. 1987. The origin, inheritance, and instability of butternut squash (Cucurbita moschata Duchesne).  HortScience 22: 535–539.
  53. Nath, P., O.P. Dutta, S. Velayudhan, and K.R.M. Swamy. 1976. Inheritance of resistance to fruit fly in pumpkin.  Sabrao J. 8: 117–119.
  54. Nee, M. 1990. The domestication of Cucurbita (Cucurbitaceae).  Econ. Bot. 44(3, Suppl.): 56–68.
  55. Pachner, M. and T. Lelley. 2004. Different genes for resistance to zucchini yellow mosaic virus (ZYMV) in Cucurbita moschata.  In: A. Lebeda and H.S. Paris (eds.), Proceedings of Cucurbitaceae 2004, pp. 237–243.  Palacký Univ., Olomouc, Czech Republic.
  56. Padley, L.D. Jr., E.A. Kabelka, and P.D. Roberts. 2009. Inheritance of resistance to crown rot caused by Phytophthora capsici in Cucurbita.  HortScience 44: 211–213.
  57. Paris, H.S. 1988. Complementary genes for orange fruit flesh color in Cucurbita pepo.  HortScience 23: 601–603.
  58. Paris, H.S. 1992. A recessive, hypostatic gene for plain light fruit coloration in Cucurbita pepo.  Euphytica 60: 15–20.
  59. Paris, H.S. 1995. The dominant Wf (white flesh) allele is necessary for expression of “white” mature fruit color in Cucurbita pepo.  In: G. Lester and J. Dunlap (Eds.), Cucurbitaceae ’94, pp. 219–220.  Gateway, Edinburg, TX  U.S.A.
  60. Paris, H.S. 1996. Multiple allelism at the D locus in squash.  J. Hered. 87: 391–395.
  61. Paris, H.S. 1997. Genes for developmental fruit coloration of acorn squash.  J. Hered. 88: 52–56.
  62. Paris, H.S. 2000. Gene for broad, contiguous dark stripes in cocozelle squash.  Euphytica 115: 191–196.
  63. Paris, H.S. 2000. Quiescent intense (qi): a gene that affects young but not mature fruit color intensity in Cucurbita pepo.  J. Hered. 91: 333–339.
  64. Paris, H.S. 2000. Segregation distortion in Cucurbita pepo.  In: N. Katzir and H.S. Paris (Eds.), Proceedings of Cucurbitaceae 2000.  Acta Hort. 510: 199–202.
  65. Paris, H.S. 2002. Multiple allelism at a major locus affecting fruit coloration in Cucurbita pepo.  Euphytica 125: 149–153.
  66. Paris, H.S. 2002. No segregation distortion in intersubspecific crosses in Cucurbita pepo.  Cucurbit Genet. Coop. Rep. 25: 43–45.
  67. Paris, H.S. 2003. Genetic control of irregular striping, a new phenotype in Cucurbita pepo.  Euphytica 129: 119–126.
  68. Paris, H.S. 2009. Genes for “reverse” fruit striping in squash (Cucurbita pepo). J. Hered. 100: 371–379.
  69. Paris, H.S. and Y. Burger. 1989. Complementary genes for fruit striping in summer squash.  J. Hered. 80: 490–493.
  70. Paris, H.S. and S. Cohen. 2000. Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo.  Ann. Appl. Biol. 136: 209–214.
  71. Paris, H.S., S. Cohen, Y. Burger, and R. Yoseph. 1988. Single gene resistance to zucchini yellow mosaic virus in Cucurbita moschata.  Euphytica 37: 27–29.
  72. Paris, H.S., A. Hanan, and F. Baumkoler. 2004. Assortment of five gene loci in Cucurbita pepo.  In: A. Lebeda and H.S. Paris (Eds.), Proceedings of Cucurbitaceae 2004, pp. 389–394..  Palacký Univ., Olomouc, Czech Republic.
  73. Paris, H.S. and H. Nerson. 1986. Genes for intense pigmentation of squash.  J. Hered. 77: 403–409.
  74. Paris, H.S., H. Nerson, and Y. Burger. 1985. Precocious PI 165561 and Precocious PI 165561R pumpkin breeding lines.  HortScience 20: 778–779.
  75. Rakoczy-Trojanowska, M. and S. Malepszy. 1999. Inheritance of umbrella-like leaf shape in materials derived form Cucurbita maxima x C. pepo hybrids.  Cucurbit Genet. Coop. Rep. 22: 50–52.
  76. Rhodes, A.M. 1964. Inheritance of powdery mildew resistance in the genus Cucurbita.  Plant Dis. Rptr. 48: 54–55.
  77. Robinson, R.W. 1987. Inheritance of fruit skin color in Cucurbita moschata.  Cucurbit Genet. Coop. Rep. 10: 84.
  78. Robinson, R.W. and M.G. Hutton. 1996. Update of gene list for Cucurbita spp.  Cucurbit Genet. Coop. Rep. 19: 91–92.
  79. Robinson, R.W. and H.S. Paris. 2000. Cucurbita gene list update – 2000.  Cucurbit Genet. Coop. Rep. 23: 137–138.
  80. Robinson, R.W., N.F. Weeden, and R. Provvidenti. 1988. Inheritance of resistance to zucchini yellow mosaic virus in the interspecific cross Cucurbita maxima x C. ecuadorensis.  Cucurbit Genet. Coop. Rep. 11: 74–75.
  81. Roe, N.E. and W.P. Bemis. 1977. Corolla color in Cucurbita.  J. Hered. 68: 193–194.
  82. Scarchuk, J. 1954. Fruit and leaf characters in summer squash.  J. Hered. 45: 295–297.
  83. Scarchuk, J. 1974. Inheritance of light yellow corolla and leafy tendrils in gourd (Cucurbita pepo var. ovifera Alef.).  HortScience 9: 464.
  84. Schaffer, A.A. and C.D. Boyer. 1984. The influence of gene B on fruit development in Cucurbita pepo.  J. Amer. Soc. Hort. Sci. 106: 432–437.
  85. Schaffer, A.A., C.D. Boyer, and H.S. Paris. 1986. Inheritance of rind lignification and warts in Cucurbita pepo L. and a role for phenylalanine ammonia lyase in their control.  Z. Pflanzenzüchtg. 96: 147–153.
  86. Schöniger, G. 1952. Vorläufige Mitteilung über das Verhalten der Testa- und Farbgene bei verschiedenen Kreuzungen innerhalb der Kürbisart Cucurbita pepo L.  Züchter 22: 316–337.
  87. Scott, D.H. and M.E. Riner. 1946. A mottled leaf character in winter squash.  J. Hered. 37: 27–28.
  88. Scott, D.H. and M.E. Riner. 1946. Inheritance of male sterility in winter squash.  Proc. Amer. Soc. Hort. Sci. 47: 375–377.
  89. Sharma, G.C. and C.V. Hall. 1971. Cucurbitacin B and total sugar inheritance in Cucurbita pepo related to spotted cucumber beetle feeding.  J. Amer. Soc. Hort. Sci. 96: 750–754.
  90. Shifriss, O. 1947. Developmental reversal of dominance in Cucurbita pepo.  Proc. Amer. Soc. Hort. Sci. 50: 330–346.
  91. Shifriss, O. 1955. Genetics and origin of the bicolor gourds.  J. Hered. 46: 213–222.
  92. Shifriss, O. 1966. Behavior of gene B in Cucurbita.  Veg. Improv. Newsl. 8: 7–8.
  93. Shifriss, O. 1981. Origin, expression, and significance of gene B in Cucurbita pepo L.  J. Amer. Soc. Hort. Sci. 106: 220–232.
  94. Shifriss, O. 1982. Identification of a selective suppressor gene in Cucurbita pepo L.  HortScience 17: 637–638.
  95. Shifriss, O. 1989. Relationship between the B genes of two Cucurbita species, II.  Cucurbit Genet. Coop. Rep. 12: 75–78.
  96. Shifriss, O. and H.S. Paris. 1981. Identification of modifier genes affecting the extent of precocious fruit pigmentation in Cucurbita pepo L.  J. Amer. Soc. Hort. Sci. 106: 653–660.
  97. Sinnott, E.W. and G.B. Durham. 1922. Inheritance in the summer squash.  J. Hered. 13: 177–186.
  98. Stoilova, T., N. Cholakova, and M. Markova. 2006. Variation in seed protein and isozyme patterns in Cucurbita cultivars. Biol. Plant. 50: 450–452.
  99. Superak, T.H. 1987. A green corolla mutant in Cucurbita pepo.  Cucurbit Genet. Coop. Rep. 10: 103.
  100. Wall, J.R. and T.W. Whitaker. 1971. Genetic control of leucine aminopeptidase and esterase isozymes in the interspecific cross Cucurbita ecuadorensis C. maxima.  Biochem. Genet. 5: 223–229.
  101. Weeden, N.F., R.W. Robinson, and F. Ignart. 1984. Linkage between an isozyme locus and one of the genes controlling resistance to watermelon mosaic virus 2 in Cucurbita ecuadorensis.  Cucurbit Genet. Coop. Rep. 7: 86–87.
  102. Weeden, N.F. and R.W. Robinson. 1986. Allozyme segregation ratios in the interspecific cross Cucurbita maxima x C. ecuadorensis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure.  Genetics 114: 593–609.
  103. Wehner, T.C. and J.E. Staub. 1997. 1997 gene list for cucumber. Cucurbit Genet. Coop. Rep. 20: 66–88.
  104. Whitaker, T.W. 1932. Fertile gourd-pumpkin hybrids. J. Hered. 23: 427–430.
  105. Wilson, H.D. 1989. Discordant patterns of allozyme and morphological variation in Mexican Cucurbita.  Syst. Bot. 14: 612–623.
  106. Wu, T., J. Zhou, Y. Zhang, and J. Cao. 2007. Characterization and inheritance of a bush-type in tropical pumpkin (Cucurbita moschata Duchesne).  Sci. Hort. 114: 1–4.
  107. Xianglin, Z. 1987. A study on the breeding of naked kernel pumpkin and its genetic behavior.  Acta Hort. Sin. 14: 115–118 (Chinese, with English summary).
  108. Xiao, Q. and J.B. Loy. 2007. Inheritance and characterization of a glabrous trait in summer squash.  J. Amer. Soc. Hort. Sci. 132: 327–333.
  109. Xie, J. and T.C. Wehner. 2001. Gene list 2001 for cucumber.  Cucurbit Genet. Coop. Rep. 24: 110–136.
  110. Young, K. and E.A. Kabelka. 2009. Characterization of resistance to squash silverleaf disorder in summer squash. HortScience 44: 1213–1214.
  111. Zraidi, A. and T. Lelley. 2004. Genetic map for pumpkin Cucurbita pepo using random amplified polymorphic DNA markers.  In: A. Lebeda and H.S. Paris (Eds.), Proceedings of Cucurbitaceae 2004, pp. 507–514.  Palacký Univ., Olomouc, Czech Republic.
  112. Zraidi, A., M. Pachner, T. Lelley, and R. Obermayer. 2003. On the genetics and histology of the hull-less character of Styrian oil-pumpkin (Cucurbita pepo L.).  Cucurbit Genet. Coop. Rep. 26: 57–61.
  113. Zraidi, A., G. Stift, M. Pachner, A. Shojaeiyan, L. Gong, and T. Lelley. 2007. A consensus map for Cucurbita pepo. Mol. Breed. 20: 375–388.

Table 4. Genes with known DNA sequence.

Gene Symbol*

Gene Accession

(Putative) Function

Source

Ref.

AIG-2 AY666083 aspartic protease inhibitor C. maxima **
PRB1 AY326308 phloem RNA-binding protein C. maxima ‘Big Max’ **
GAIP AY32630, AY326307 gibberellic acid insensitive phloem protein (two very similar genes) C. maxima ‘Big Max’ **
FAD2 AY525163 omega-6 fatty acid desaturase C. pepo zucchini **
NIP1 AJ544830 Nod26-like protein C. pepo zucchini 35
PP2 AY312402 phloem protein 2 lectin (includes promoter region) C. moschata crookneck **
PP2 AF150627 phloem protein 2 lectin C. moschata crookneck **
PP2 Z22647 phloem protein 2 lectin C. pepo ‘Autumn Gold’ 61
PP2 Z17331 phloem protein 2 lectin C. maxima ‘Big Max’ 5
PP2 L31550, L31551, L31552 phloem protein 2 (three alleles) C. maxima **
GA2OX, GA20OX, GA3OX AJ315663, AJ302041, AJ308480, AJ302040 gibberellin oxidases (two sequences for GA2OX) C. maxima ‘Riesenmelone’ **
U61385 gibberellin 20-oxidase C. maxima ‘Riesenmelone’ 38
U63650 gibberellin 2 beta,3 beta hydroxylase C. maxima ‘Riesenmelone’ 39
AJ006453 gibberellin 3 beta hydroxylase C. maxima ‘Riesenmelone’ **
U61386 gibberellin dioxygenase C. maxima ‘Riesenmelone’ 37
Moschatin 1 through 5 AF462349, AF504011, AY25646, AY27921, AY279217 ribosome-inactivating protein C. moschata crookneck **
CPS1 AB109763 copalyl diphosphate synthase; gibberellin biosynthesis C. maxima **
CPS AF049905, AF049906 copalyl diphosphate synthase; gibberellin biosynthesis (2 genes) C. maxima 55
Hsc70 AF527794, AF527795, AF527796 cell-autonomous heat shock protein; chaperonin 70 (multiple sequences) C. maxima 1
AB061204 thioredoxin h C. maxima **
Puga, Pugb, Pugc AB055116, AB055117, AB055118 glutathione S-transferase C. maxima **
CYP88A AF212990, AF212991 cytochrome P450; ent-kaurenoic acid oxidase (multiple alleles) C. maxima ‘Queensland Blue’ 23
PP2 AF520583 phloem protein 2 C. digitata PI 240879 **
PP2 AF520582 phloem lectin C. argyrosperma subsp. sororia **
L32700, L32701 phloem lectin C. argyrosperma 5
X56948 malate synthase Cucurbita sp.*** ‘Kurokawa Amakuri Nankin’ 44
pMCPN60 X70867, X70868 chaperonin 60 ‘Kurokawa Amakuri Nankin’ 59
PCPK AY07280, AY072802 phloem calmodulin-like protein kinases C. maxima ‘Big Max’ 66
X55779 ascorbate oxidase C. maxima ‘Ebisu Nankin’ 14
AAO D55677 ascorbate oxidase C. maxima 33
chitP1 AB015655 chitinase C. maxima ‘Ebisu Nankin’ **
PLC AF082284 chitinase C. moschata crookneck 32
PV72 AB006809 vacuolar sorting receptor ‘Kurokawa Amakuri Nankin’ 54
D88420 stromal ascorbate peroxidase ‘Kurokawa Amakuri Nankin’ 42
D78256 isocitrate lyase ‘Kurokawa Amakuri Nankin’ 41
D70895 3-ketoacyl-CoA thiolase ‘Kurokawa Amakuri Nankin’ 31
D83656 thylakoid ascorbate peroxidase ‘Kurokawa Amakuri Nankin’ 64
D49433 hydroxypyruvate reductase ‘Kurokawa Amakuri Nankin’ 21
MP28 D45078 membrane protein ‘Kurokawa Amakuri Nankin’ 28
D38132 glyoxysomal citrate synthase ‘Kurokawa Amakuri Nankin’ 30
D29629 aconitase ‘Kurokawa Amakuri Nankin’ 19
D16560 prepro2S albumin ‘Kurokawa Amakuri Nankin’ 17
D14044 glycolate oxidase ‘Kurokawa Amakuri Nankin’ 58
AF002016 acyl CoA oxidase ‘Kurokawa Amakuri Nankin’ 18
PP36 AF274589 cytochrome b5 reductase C. maxima ‘Big Max’ **
pAPX AB070626 peroxisomal ascorbate peroxidase ‘Kurokawa Amakuri Nankin’ 48
CM-ACS3 AB038559 ACC synthase C. maxima 62
CmATS AB049135 acyl-(acyl-carrier protein); acyltransferase C. moschata ‘Shirogikuza’ **
Y00771 glycerol-3-phosphate acyltransferase transit peptide C. moschata ‘Shirakikuza’ 29
AB002695 aspartic endopeptidase C. pepo 24
PS-1 AF284038 phloem serpin C. maxima 65
SLW AF170086, AF170087 silverleaf whitefly-induced protein (multiple genes) C. pepo zucchini ‘Chefini’ 60
aprX Y17192 anionic peroxidase C. pepo zucchini ‘Black Beauty’ 6
cpCPK1 U90262 calcium-dependent calmodulin-independent protein kinase C. pepo zucchini 13
PP16 AF079170, AF079171 mRNA movement protein; phloem transport (multiple alleles) C. maxima ‘Big Max’ 63
AOBP D45066 transcription factor binding to ascorbate oxidase C. maxima 34
accW D01032 auxin-induced 1-aminocyclopropane-1-carboxylate synthase C. maxima ‘Ebisu’ 47
U37774 auxin-induced 1-aminocyclopropane-1-carboxylic acid synthase C. maxima 46
ACC1 M58323 1-aminocyclopropane-1-carboxylate synthase C. pepo 52
ACC1A, ACC1B M61195 1-aminocyclopropane-1-carboxylate synthase (2 genes, tightly linked) C. pepo zucchini 26
PHP-1 D86306 proton-translocating inorganic pyrophosphatase C. moschata crookneck **
PP1 U66277 phloem filament protein C. maxima ‘Big Max’ 9
pfiAF4 X81647 trypsin inhibitor C. maxima ‘Supermarket Hybrid’ 45
pfiBM7 X81447 chymotrypsin inhibitor C. maxima ‘Supermarket Hybrid’ 45
M15265 phytochrome C. pepo zucchini ‘Black Beauty’ 53
NADH M33154 nitrate reductase C. maxima 11
M36407 11S globulin beta-subunit ‘Kurokawa Amakuri Nankin’ 20
AF206895 18S ribosomal RNA C. pepo **
AF479108 26S ribosomal RNA C. pepo 56
AJ488214 EF595858 FJ915115 FJ915114 FJ915113 FJ915112 FJ915111 FJ915110 FJ915109 FJ915108 FJ915107  FJ915106 FJ915105 FJ915104 FJ915101 AM981172 AM981170 AM981169 AM981168 5.8S ribosomal RNA C. moschata 
C. ficifolia 
C. pepo 
C. lundelliana
**, 7
AY396415 5S ribosomal RNA C. pepo 12
FJ263619 16S ribosomal RNA C. moschata **
DQ298735 AY357209 AY357208 18S ribosomal RNA C. pepo 
C. moschata
**,4
AF017158 25S ribosomal RNA C. maxima **
GID1b AM745267 gibberellin receptor C. maxima **
APRX DQ518906 class III peroxidase precursor C. pepo zucchini‘Black Beauty’ 10
RBP50 EU793994 polypyrimidine tract binding protein C. maxima‘Big Max’ 16
AJ829947 reverse transcriptase C. pepo **
rbcL AF206756 L21938 DQ535804 EU309692 ribulose 1,5-bisphosphate carboxylase C. pepo 
C. ficifolia 
C. moschata
36,57
NACP1 FJ151402 NAC-domain containing protein C. maxima 50
DNCED1 EU391616 9-cis-epoxycarotenoid dioxygenase C. moschata **
PhoH1 AB435244 alpha-1,4-glucan phosphorylase H isozyme C. maxima **
PhoL1 AB435243 alpha-1,4-glucan phosphorylase L isozyme C. maxima **
PP16-1 EU430061 16kDa phloem protein 1 C. maxima´
C. moschata ‘Ribenzhenmu’
**
PP16-2 EU430062 16kDa phloem protein 2 C. maxima´
C. moschata ‘Ribenzhenmu’
**
PP16-1 EF055181 phloem protein 1 C. pepo **
PP16-2 EF055182 phloem protein 2 C. pepo **
D01033 1-aminocyclopropane-1-carboxylate synthase C. maxima ‘Ebisu’ 27
EF103124 mitochondrial alternative oxidase C. pepo **
matK DQ536666 DQ536665 DQ536664 maturase K C. pepo 
C. digitata 
C. ficifolia
36
trnG EF595908 tRNA-Gly C. pepo 15
EF202177 aquaporin C. ficifolia **
EU056338 chitinase C. moschata **
cat1 D55645 catalase C. pepo **
cat2 D55646 catalase C. pepo **
cat3 D55647 catalase C. pepo **
AF260737 catalase C. pepo **
FTL1 EF462211 DQ865290 flowering locus T protein 1 C. moschata PI441726
C. maxima ‘Big Max’
40
FTL2 DQ865291 flowering locus T protein 2 C. maxima ‘Big Max’ 40
AB303333 glyoxalase I C. maxima **
EF062594 Cu-Zn SOD C. ficifolia **
EF101660
EF101661
EF101662
EF101663
EF101664
EF101665
EF101666
EF101667
EF199760 EF199759 EF199758 EF199757 EF199756 EF199755
NBS resistance protein C. moschata **
AB002695 aspartic endopeptidase C. pepo 24
DHAR EF122791 dehydroascorbate reductase C. ficifolia **
API DQ286449 DQ286448 DQ286447 DQ286445 DQ286444 DQ286443 DQ287856 aspartic acid proteinase inhibitor C. pepo 
C. maxima
7
EF055184 EF055183 EF055180 16 kDa phloem protein 2 C. moschata 
C. ficifolia
**
PP16 DQ088368
DQ088369
DQ088370
DQ088371
DQ088372
DQ088373
16 kDa. phloem protein 2 C. maxima ‘Lefki kolokytha’ **
PATL1 DQ251455 patellin 1 C. pepo ‘Fordhook’ 49
E02079 glycerol-3-phosphate acyltransferase C. moschata **
AJ628045 AJ630372 histidine kinase C. maxima **
A215 X76086 14-3-3 protein endonuclease C. pepo 43
EIN3 DQ023224 DQ023223 EIN3-like protein C. moschata **
aprx Y17192 peroxidase C. pepo zucchini ‘Black Beauty’ **
pfiAF4 X81647 fruit trypsin inhibitor C. maxima ‘Supermarket Hybrid’ **
pfiBM7 X81447 chymotrypsin inhibitor C. maxima‘Supermarket Hybrid’ **
X73314 Gibberellin 20-oxidase C. maxima‘Riesenm Elone, Gelb Genetzt’ **
X55779 ascorbate oxidase Cucurbita spp. ‘Ebisu Nankin’ **
pMCPN60-2 X70867 X70868  X68606 chaperonin 60 Cucurbita spp. ‘Kurokawa Amakuri’ **
AJ829946 AJ829945 AJ829944 reverse transcriptase C. pepo **
NIP1 AJ544830 Nod26-like protein C. pepo 35
GAIP-B AY326307 AY326306 gibberellic acid insensitive phloem B C. maxima 22
AY663852 serine/threonine kinase-like protein C. ficifolia **
CPR AB116239 oxidosqualene cyclase C. pepo **
CPQ AB116238 cucurbitadienol synthase C. pepo **
AY672635 chymotrypsin protease inhibitor C. maxima **
AY672634 aspartic protease inhibitor C. maxima **
AIG-2 AY666083 aspartic protease inhibitor C. maxima **
AIG-1 AY666082 aspartic protease inhibitor C. maxima **
rpl2 AY396281 ribosomal protein L2 C. pepo 12
rpl23 AY396396 ribosomal protein L23 C. pepo 12
rps19 AY396376 ribosomal protein S19 C. pepo 12
psbC AY396185 photosystem II protein C. pepo 12
rpoB AY396320 polymerase beta subunit C. pepo 12
rps2 AY396301 ribosomal protein S2 C. pepo 12
FAD2 AY525163 omega-6 fatty acid desaturase C. pepo **
matR AY453101 maturase C. pepo 3
GAS1 AY379783 galactinol synthase C. pepo 2
atpB AF209573 ATP synthase beta subunit C. pepo **
Pugf AB059484 glutathione S-transferase C. maxima 25
nad1 nad2 AF453584
through
AF453645
NADH dehydrogenase subunit 1 and 2 C. pepo ssp. pepo 
C. pepo ssp. fraterna 
C. pepo ssp. ovifera 
C. pepo var. texana 
C. pepo var. ozarkana 
C. moschata 
C. maxima 
C. foetidissima 
C. argyrosperma 
C. sororia 
C. ecuadorensis 
C. andreana; 
C. okeechobeensis ssp. martinezii
51
CmMP73 AB062669 preproMP73 C. maxima‘Kurokawa Amakuri Nankin’ **
CmATS1;2 AB042401 AB042400 glycerol-3-phosphate acyltransferase C. moschata **
AF260736 glucose-6-phosphate dehydrogenase C. pepo **
AF260735 AF260734 AF260733 AF260732 NADP-dependent malic enzyme C. pepo **
AF260731 heat shock protein 70 C. pepo **
API-2 API-1 AF038167 AF038166 aspartic proteinase inhibitor C. maxima 8

* Gene symbols were assigned by the researchers isolating the gene; they have no correspondence to the official Cucurbita gene symbols.
**Unpublished: Genes can be submitted directly to Genbank, wthout being published in a journal.
*** ‘Kurokawa Amakuri Nankin’ was identified only as “Cucurbita sp.”

Literature Cited in Table 4

  1. Aoki, K., F. Kragler, B. Xoconostle-Cazares and W.J. Lucas. 2002. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc. Natl. Acad. Sci. U.S.A. 99: 16342–16347.
  2. Ayre, B.G., J.E. Blair, and R. Turgeon. 2003. Funtional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. Plant Physiol. 133: 1229–1239.
  3. Barkman, T.J., S.H. Lim, K.M. Salleh, and J. Naiz. 2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proc. Natl. Acad. Sci. U.S.A. 101: 787–792.
  4. Bartoszewski, G., N. Katzir, and M.J. Havey. 2004. Organization of repetitive DNAs and the genomic regions carrying ribosomal RNA, cob, and atp9 genes in the cucurbit mitochondrial genomes. Theor. Appl. Genet. 108: 982–992.
  5. Bostwick, D.E. and G.A. Thompson. 1993. Nucleotide sequence of a pumpkin phloem lectin cDNA. Plant Physiol. 102: 693–694.
  6. Carpin, S., M. Crevecoeur, H. Greppin, and C. Penel. 1999. Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol. 120: 799–810.
  7. Christeller, J.T., P.C. Farley, R.K. Marshall, A. Anandan, M.M. Wright, R.D. Newcomb, and W.A. Laing. 2006. The squash aspartic proteinase inhibitor SQAPI is widely present in the Cucurbitales, comprises a small multigene family, and is a member of the phytocystatin family. J. Mol. Evol. 63: 747–757.
  8. Christeller, J.T., P.C. Farley, R.J. Ramsay, P.A. Sullivan, and W.A. Laing. 1998. Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate. Eur. J. Biochem. 254: 160–167.
  9. Clark, A.M., K.R. Jacobsen, D.E. Bostwick, J.M. Dannenhoffer, M.I. Skaggs and G.A. Thompson. 1997. Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. Plant J. 12: 49–61.
  10. Cosio, C., L. Vuillemin, M. DeMeyer, C. Kevers, C. Penel, and C. Dunand. 2009. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta 229: 823–836.
  11. Crawford, N.M., W.H. Campbell and R. Davis. 1986. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc. Natl. Acad. Sci. U.S.A. 83: 8073–8076.
  12. Decker-Walters, D.S., S.M. Chung, and J.E. Staub. 2004. Plastid sequence evolution: a new pattern of nucleotide substitutions in the Cucurbitaceae. J. Mol. Evol. 58: 606–614.
  13. Ellard-Ivey, M., R.B. Hopkins, T.J White, and T.L. Lomax. 1999. Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L.). Plant Mol. Biol. 39: 199–208.
  14. Esaka, M., T. Hattori, K. Fujisawa, S. Sakajo, and T. Asahi. 1990. Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. Eur. J. Biochem. 191: 537–541.
  15. Ghebretinsae, A.G., M. Thulin, and J.C. Barber. 2007. Relationships of cucumbers and melons unraveled: molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae). Am. J. Bot. 94: 1256–1266.
  16. Ham, B.K., J.L. Brandom, B. Xoconostle-Cazares, V. Ringgold, T.J. Lough, and W.J. Lucas. 2009. A polypryrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21: 197–215.
  17. Hara-Hishimura, I., Y. Takeuchi, K. Inoue and M. Nishimura. 1993. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J. 4: 793–800.
  18. Hayashi, H., L. De Bellis, K. Yamaguchi, A. Kato, M. Hayashi, and M. Nishimura. 1998. Molecular characterization of a glyoxysomal long chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J. Biol. Chem. 273: 8301–8307.
  19. Hayashi, H., L. De Bellis, A. Alpi and M. Nishimura. 1995. Cytosolic aconitase participates in the glyoxylate cycle in etiolated pumpkin cotyledons. Plant Cell Physiol. 36: 669–680.
  20. Hayashi, M., H. Mori, M. Nishimura, T. Akazawa and I. Hara-Nishimura. 1988. Nucleotide sequence of cloned cDNA coding for pumpkin 11-S globulin beta subunit. Eur. J. Biochem. 172: 627–632.
  21. Hayashi, M., R. Tsugeki, M. Kondo, H. Mori and M. Nishimura. 1996. Pumpkin hydroxypyruvate reductases with and without a putative C-terminal signal for targeting to microbodies may be produced by alternative splicing. Plant Mol. Biol. 30: 183–189.
  22. Haywood, V., T.S. Yu, N.C. Huang, and W.J. Lucas. 2005. Phloem long-distance trafficking of Gibberellic acid-insensitive RNA regulates leaf development. Plant J. 42: 49–68.
  23. Helliwell, C.A., M.R. Olive, L. Gebbie, R. Forster, W.J. Peacock, and E.S. Dennis. 2000. Isolation of an ent-kaurene oxidase cDNA from Cucurbita maxima. Aust. J. Plant Physiol. 27: 1141–1149.
  24. Hossain, M.Z. and M. Fujita. 2002. Purification of a phi-type glutathione S-transferase from pumpkin flowers, and molecular cloning of its cDNA. Biosci. Biotechnol. Biochem. 66: 2068–2076.
  25. Hiraiwa, N., M. Kondo, M. Nishimura, and I. Hara-Nishimura. 1997. An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur. J. Biochem. 246: 133–141.
  26. Huang, P.L., J.E. Parks, W.H. Rottmann, and A. Theologis. 1991. Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar but differentially regulated. Proc. Natl. Acad. Sci. U.S.A. 88: 7021–7025.
  27. Imaseki, H., K. Yamazaki, H. Mori, and N. Nakagawa. 1991. Cloning of a complementary DNA for auxin-induced 1-aminocyclopropane-1-carboxylase synthase and differential expression of the gene by auxin and wounding. Plant Cell Physiol. 32: 1153–1163.
  28. Inoue, K., Y. Takeuchi, M. Nishimura and I. Hara-Nishimura. 1995. Characterization of two integral membrane proteins located in the protein bodies of pumpkin seeds. Plant Mol. Biol. 28: 1089–1101.
  29. Ishizaki, O., I. Nishida, K. Agata, G. Eguchi and N. Murata. 1988. Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett. 238: 424–430.
  30. Kato, A., M. Hayashi, H. Mori, and M. Nishimura. 1995. Molecular characterization of a glyoxysomal citrate synthase that is synthesized as a precursor of higher molecular mass in pumpkin. Plant Mol. Biol. 27: 377–390.
  31. Kato, A., M. Hayashi, Y. Takeuchi and M. Nishimura. 1996. cDNA cloning and expression of a gene for 3-ketoacyl-CoA thiolase in pumpkin cotyledons. Plant Mol. Biol. 31: 843–852.
  32. Kim, M.G., K.O Lee, N.E. Cheong, Y.O. Choi, J.H. Jeong, M.J. Cho, S.C. Kim, and S.Y. Lee. 1999. Molecular cloning and characterization of a class III chitinase in pumpkin leaves, which strongly binds to regenerated chitin affinity gel. Plant Sci. 147: 157–163.
  33. Kisu, Y., Y. Harada, M. Goto and M. Esaka. 1997.Cloning of the pumpkin ascorbate oxidase gene and analysis of a cis-acting region involved in induction by auxin. Plant Cell Physiol. 38: 631–637.
  34. Kisu, Y., T. Ono, N. Shimofurutani, M. Suzuki, and M. Esaka. 1998. Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant Cell Physiol. 39: 1054–1064.
  35. Klebl, F., M. Wolf, and N. Sauer. 2003. A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thalianadelta-TIP or gamma-TIP. FEBS Lett. 547: 69–74.
  36. Kocyan, A., L.B. Zhang, H. Schaefer, and S.S. Renner. 2007. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet. Evol. 44: 553–577.
  37. Lange, T. 1997. Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 94: 6553–6558.
  38. Lange, T., P. Hedden, and J.E. Graebe. 1994. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 91: 8552–8556.
  39. Lange, T., S. Robatzek, and A. Frisse. 1997. Cloning and expression of a gibberellin 2 beta,3 beta-hydroxylase cDNA from pumpkin endosperm. Plant Cell 9: 1459–1467.
  40. Lin, M.K., H. Belanger, Y.J. Lee, E. Varkonyl-Gasic, K. Taoka, E. Miura, B. Xoconostle-Cazares, K. Gendler, R.A. Jorgensen, B. Phinney, T.J. Lough, and W.J. Lucas. 2007. Flowering locus T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19: 1488–1506.
  41. Mano, S., M. Hayashi, M. Kondo, and M. Nishimura. 1996. cDNA cloning and expression of a gene for isocitrate lyase in pumpkin cotyledons. Plant Cell Physiol. 37: 941–948.
  42. Mano, S., K. Yamaguchi, M. Hayashi, and M. Nishimura. 1997. Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett. 413: 21–26.
  43. Markiewicz, E., R. Rzepecki, and J. Szopa. 1994. Molecular cloning and sequencing of the cDNA encoding plant nuclear matrix endonuclease. Acta Biochem. Pol. 41: 137–138.
  44. Mori, H., Y. Takeda-Yoshikawa, I. Hara-Nishimura, and M. Nishimura. 1991. Pumpkin malate synthase. Cloning and sequencing of the cDNA and northern blot analysis. Eur. J. Biochem. 197: 331–336.
  45. Murray, C. and J.T. Christeller. 1995. Purification of a trypsin inhibitor (PFTI) from pumpkin fruit phloem exudate and isolation of putative trypsin and chymotrypsin inhibitor cDNA clones. Biol. Chem. Hoppe-Seyler 376: 281–287.
  46. Nakagawa, N., Y. Kamiya, and H. Imaseki. 1995. Nucleotide sequence of an auxin-regulated 1-aminocyclopropane-1-carboxylic acid synthase gene (Accession No. U37774) from Cucurbita maxima Duch. (PGR95-110). Plant Physiol. 109: 1499.
  47. Nakajima, N., H. Mori, K. Yamazaki, and H. Imaseki. 1990. Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase induced by tissue wounding. Plant Cell Physiol. 31: 1021–1029.
  48. Nito, K., K. Yamaguchi, M. Kondo, M. Hayashi, and M. Nishimura. 2001. Pumpkin peroxisomal ascorbate peroxidase is localized on peroxisomal membranes and unknown membranous structures. Plant Cell Physiol. 42: 20–27.
  49. Peterman, T.K., A.S. Sequeira, J.A. Samia, and E.E. Lunde. 2006. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo). J. Plant Physiol. 163: 1150–1158.
  50. Ruiz-Medrano, R., B. Xoconostle-Cazares, and W.J. Lucas. 1999. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126: 4405–4419.
  51. Sanjur, O.I., D.R. Piperno, T.C. Andres, and L. Wessel-Beaver. 2002. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc. Natl. Acad. Sci. U.S.A. 99: 535–540.
  52. Sato, T., P.W. Oeller, and A. Theologis. 1991. The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis. J. Biol. Chem. 266: 3752–3759.
  53. Sharrock, R.A., J.L. Lissemore, and P.H. Quail. 1986. Nucleotide and amino acid sequence of a Cucurbita phytochrome cDNA clone:  identification of conserved features by comparison with Avena phytochrome. Gene 47: 287–295.
  54. Shimada, T., M. Kuroyanagi, M. Nishimura, and I. Hara-Nishimura. 1997. A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 38: 1414–1420.
  55. Smith, M.W., S. Yamaguchi, T. Ait-Ali, and Y. Kamiya. 1998. The first step of gibberellin biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes. Plant Physiol. 118: 1411–1419.
  56. Soltis, D.E., A.E. Senters, M.J. Zanis, S. Kim, J.D. Thompson, P.S. Soltis, L.P. Ronse de Craene, P.K. Endress, and J.S. Farris. 2003. Gunnerales are sister to other core eudicots:  implications for the evolution of pentamery. Am. J. Bot. 90: 461–470.
  57. Swensen, S.M., B.C. Mullin, and M.W. Chase. 1994. Phylogenetic affinities of Datiscaceae based on an analysis of nucleotide sequences from the plastid rbcL gene. Syst. Bot. 19: 157–168.
  58. Tsugeki, R., I. Hara-Nishimura, H. Mori, and M. Nishimura. 1993. Cloning and sequencing of cDNA for glycolate oxidase from pumpkin cotyledons and northern blot analysis. Plant Cell Physiol. 34: 51–57.
  59. Tsugeki, R., H. Mori, and M. Nishimura. 1992. Purification, cDNA cloning and Northern-blot analysis of mitochondrial chaperonin 60 from pumpkin cotyledons. Eur. J. Biochem. 209: 453–458.
  60. van de Ven, W.T., C.S. LeVesque, T.M. Perring, and L.L. Walling. 2000. Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12: 1409–1423.
  61. Wang, M.B., D. Boulter, and J.A. Gatehouse. 1994. Characterization and sequencing of cDNA clone encoding the phloem protein PP2 of Cucurbita pepo. Plant Mol. Biol. 24: 159–170.
  62. Watanabe, T., H. Fujita, and S. Sakai. 2001. Effects of jasmonic acid and ethylene on the expression of three genes for wound-inducible 1-aminocyclopropane-1-carboxylate synthase in winter squash (Cucurbita maxima). Plant Sci. 161: 67–75.
  63. Xoconostle-Cazares, B., Y. Xiang, R. Ruiz-Medrano, H.L. Wang, J. Monzer, B.C. Yoo, K.C. McFarland, V.R. Franceschi, and W.J. Lucas. 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283: 94–98.
  64. Yamaguchi, K., M. Hayashi, and M. Nishimura. 1996. cDNA cloning of thylakoid-bound ascorbate peroxidase in pumpkin and its characterization. Plant Cell Physiol. 37: 405–409.
  65. Yoo, B.C., K. Aoki, Y. Xiang, L.R. Campbell, R.J. Hull, B. Xoconostle-Cazares, J. Monzer, J.Y. Lee, D.E. Ullman, and W.J. Lucas. 2000. Characterization of Cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor. J. Biol. Chem. 275: 35122–35128.
  66. Yoo, B.C., J.Y. Lee, and W.J. Lucas. 2002. Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1. J. Biol. Chem. 277: 15325–15332.

Continue Reading