Gene List for Watermelon

Nihat Guner and Todd C. Wehner

Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609

This is the latest version of the gene list for watermelon (*Citrullus lanatus* (Thunb.) Matsum. and Nakai). The watermelon genes were originally organized and summarized by Poole (1944).). The list has been expanded by Robinson et al. (1976), the Cucurbit Gene List Committee (1979, 1982, and 1987), Henderson (1991 and 1992), Rhodes and Zhang (1995), and Rhodes and Dane (1999). The current list provides an update of the known genes of watermelon. This year, the list has 162 total mutants, grouped into seed and seedling mutants, vine mutants, flower mutants, fruit mutants, resistance mutants, protein (isozyme) mutants, DNA (RFLP and RAPD) markers, and cloned genes.

Researchers are encouraged to send reports of new genes, as well as seed samples of lines containing the gene mutant to the watermelon gene curator (Todd C. Wehner), or to the assistant curator (Stephen R. King). Please inform us of omissions or errors in the gene list. Scientists should consult the list as well as the rules of gene nomenclature for the Cucurbitaceae (Cucurbit Gene List Committee, 1982; Robinson et al., 1976) before choosing a gene name and symbol. Please choose a gene name and symbol with the fewest characters that describes the recessive mutant, and avoid use

of duplicate gene names and symbols. The rules of gene nomenclature were adopted in order to provide guidelines for naming and symbolizing genes. Scientists are urged to contact members of the gene list committee regarding rules and gene symbols. The watermelon gene curators of the Cucurbit Genetics Cooperative are collecting seeds of the type lines for use by interested researchers, and would like to receive seed samples of any of the lines listed.

This gene list has been modified from previous lists in that we have 1) added or expanded the description of the phenotypes of many of the gene mutants, 2) added descriptions for phenotypes of interacting gene loci, 3) identified the type lines that carry each form of each gene, 4) identified the gene mutant lines that are in the curator collections, and 5) added genes that have not previously been described (cr. Ctr. dw-3, eg. ms2, Ti, ts and zvm). Initially, we had intended to include a review of gene linkage, but few reports were found except for sets of molecular markers in wide crosses of *Citrullus*. Additional work is needed in this area to measure linkages and clarify gene interactions. Finally, we attempted to correct some of the errors in gene descriptions or references from previous lists.

	Character	References ^z	references ^z	lable
-	<i>andromonoecious</i> ; recessive to monoecious; <i>a</i> from 'Angeleno' (black seeded); <i>A</i> from cultivars 'Conqueror' and 'Klondike'.	Rosa, 1928	Porter, 1937; Poole, 1944	C
-		Navot et al., 1990	-	М
-	Aconitase-2.		-	М
-	<i>Alcohol dehydrogenase-1;</i> one of five codominant alleles, each regulating one band	Navot and Zamir 1986, 1987; Zamir et	-	М
-	<i>Alcohol dehydrogenase-1¹;</i> one of five codominant alleles, each regulating one band; found in <i>C. lanatus</i> var. <i>citroides</i> and <i>C. colocynthis</i> .	Navot and Zamir 1986, 1987; Zamir et al., 1984	-	М
-	Alcohol dehydrogenase- l^2 ; one of five codominant alleles, each regulating one band; found in <i>C. lanatus</i> var. <i>citroides</i> and <i>C. colocynthis</i> .	Navot and Zamir 1986, 1987; Zamir et al., 1984	-	М
-	<i>Alcohol dehydrogenase-1³;</i> one of five codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot and Zamir 1986, 1987; Zamir et al., 1984	-	М
-	<i>Alcohol dehydrogenase-1⁴;</i> one of five codominant alleles, each regulating one band; found in <i>Acanthosicyos</i>	Navot and Zamir 1986, 1987; Zamir et al., 1984	-	М
-	<i>Aulacophora faveicollis</i> resistance; resistance to the red pumpkin beetle; dominant to susceptibility; <i>Af</i> from SI.72	Vashishta and Choudhury, 1972	-	?
Acph -A	Acid phosphase-1.	Navot et al., 1990; Navot and Zamir 1986, 1987; Zamir et al., 1984	-	М
-	<i>Acid phosphatase</i> -2 ¹ ; one of two codominant alleles, each regulating one band; found in <i>C. lanatus</i> and <i>C. colocynthis</i> .	Navot et al., 1990; Navot and Zamir 1986, 1987	-	М
-	<i>Acid phosphatase-2</i> ² ; one of two codominant alleles, each regulating one band; found in <i>Acanthosicyos</i>	Navot et al., 1990; Navot and Zamir 1986, 1987	-	М
B _, Gc	Anthracnose resistance to races 1 and 3 of Glomerella cingulata var. orbiculare (Colletotrichum lagenarium); Ar-1 from 'Africa 8'*, 'Africa 9'*, and 'Africa 13'* and 'Charleston Gray'**; ar-1 from 'Iowa Belle 476', 'Iowa Belle 487'* and N.C.9-2, N.C.11, and 'New Hampshire Midget'**.	Layton 1937*	Hall et al., 1960; Robinson et al., 1976; Winstead et al., 1959**	C
	- - - - - - - - - - - -	 seeded); A from cultivars 'Conqueror' and 'Klondike'. Aconitase-1. Aconitase-2. Alcohol dehydrogenase-1; one of five codominant alleles, each regulating one band Alcohol dehydrogenase-1¹; one of five codominant alleles, each regulating one band; found in <i>C. lanatus</i> var. <i>citroides</i> and <i>C. colocynthis.</i> Alcohol dehydrogenase-1²; one of five codominant alleles, each regulating one band; found in <i>C. lanatus</i> var. <i>citroides</i> and <i>C. colocynthis.</i> Alcohol dehydrogenase-1²; one of five codominant alleles, each regulating one band; found in <i>C. lanatus</i> var. <i>citroides</i> and <i>C. colocynthis.</i> Alcohol dehydrogenase-1³; one of five codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus.</i> Alcohol dehydrogenase-1⁴; one of five codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus.</i> Alcohol dehydrogenase-1⁴; one of five codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus.</i> Aulacophora faveicollis resistance; resistance to the red pumpkin beetle; dominant to susceptibility; <i>Af</i> from SI.72 and SI.98 inbreds; <i>af</i> from 'Sugar Baby'. Acid phosphatase-2¹; one of two codominant alleles, each regulating one band; found in <i>C. lanatus</i> and <i>C. colocynthis.</i> Acid phosphatase-2²; one of two codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus.</i> Acid phosphatase-2²; one of two codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus.</i> B.Gc Anthracnose resistance to races I and 3 of <i>Glomerella cingulata</i> var. orbiculare (<i>Collectrichum lagenarium</i>); <i>Ar-1</i> from 'Africa 8'*, 'Africa 9'*, and 'Africa 13'* and 'Charleston Gray'**; ar-1 from 'Iowa Belle 476', 'Iowa Belle 487'* and N.C.9-2, N.C.11, and 'New Hampshire Midget'**. 	 seeded); A from cultivars 'Conqueror' and 'Klondike'. Aconitase-I. Navot et al., 1990 Aconitase-I. Navot et al., 1990 Alcohol dehydrogenase-I; one of five codominant alleles, each regulating one band Alcohol dehydrogenase-I'; one of five codominant alleles, each regulating one band; found in C. lanatus var. citroides and C. colocynthis. Alcohol dehydrogenase-I'; one of five codominant alleles, each regulating one band; found in C. lanatus var. citroides and C. colocynthis. Alcohol dehydrogenase-I'; one of five codominant alleles, each regulating one band; found in C. lanatus var. citroides and C. colocynthis. Alcohol dehydrogenase-I'; one of five codominant alleles, each regulating one band; found in Praecitrullus fistulosus. Alcohol dehydrogenase-I'; one of five codominant alleles, each regulating one band; found in Acanthosicyos naudiniamus. Alcohol dehydrogenase-I'; one of five codominant talleles, each regulating one band; found in Acanthosicyos naudiniamus. Aulacophora faveicollis resistance; resistance to the red pumpkin beetle; dominant to susceptibility; Af from SI.72 and SI.98 inbreds; af from 'Sugar Baby'. Acid phosphatase-2'; one of two codominant alleles, each regulating one band; found in C. lanatus and C. colocynthis. Acid phosphatase-2'; one of two codominant alleles, each regulating one band; found in C. lanatus and C. colocynthis. Acid phosphatase-2'; one of two codominant alleles, each regulating one band; found in Acanthosicyos naudiniamus. Acid phosphatase-2'; one of two codominant alleles, each regulating one band; found in Acanthosicyos naudiniamus. B,Gc Anthracnose resistance to races I and 3 of Glomerella cingulata var. orbiculare (Colletotrichum lagenarium); Ar-1 from 'Africa 8*, 'Africa 9*, and 'Africa 13* and 'Charleston Gray'**, ar-1 from Towa Belle 476'	seeded); A from cultivars 'Conqueror' and 'Klondike'.

Table 1. The genes of watermelon.

В	Y	Colletotrichum lagenarium; Ar-2-1 fromW695 citron* and PI 189225, PI 271775,PI 271779, and PI 299379**; ar-2-1 from'Allsweet', 'Charleston Gray', and 'FloridaGiant'; resistance in Citrullus colocynthisis due to other dominant factors; resistancefrom R309***; susceptibility from 'NewHampshire Midget'.Yellow flesh; Wf is epistatic to B (Yrenamed B by Henderson); WfWf BB orWfWf bb white fleshed; wfwf BB yellowfleshed; wfwf bb red fleshed; B frombreeding line V.No.3 and b from V.No.1;flesh color segregated into 12 white, 3	Shimotsuma, 1963	Rhodes, 1988***, 1991; Sowell et al., 1980**; Suvanprakorn and Norton, 1980 Henderson, 1992	?
С	-	yellow and 1 red in the F2. <i>Canary yellow flesh</i> ; dominant to pink; <i>i</i> inhibitory to <i>C</i> , resulting in red flesh; in the absence of <i>i</i> , <i>C</i> is epistatic to <i>Y</i> ; <i>CC</i> from 'Honey Cream'*, <i>cc</i> from 'Dove'*; <i>CC YY I-C I-C</i> from 'Yellow Baby' F1** and 'Yellow Doll' F1**; <i>cc y⁰y⁰ I-C I-C</i> from 'Tendersweet Orange Flesh'**; <i>cc yy</i> <i>I-C I-C</i> from 'Golden Honey'**; <i>cc YY i-C</i> <i>i-C</i> from 'Sweet Princess'**.	Poole, 1944*	Henderson et al., 1998**	С
Ctr		<i>Cool temperature resistance; Ctr</i> from line PP261-1 (a single plant selection of PI 482261 from Zimbabwe); <i>ctr</i> from 'New Hampshire Midget'; resistant to leaf mosaic injury when grown at air temperature below 20°C.	Provvidenti, 1992	Provvidenti, 2003	Р
Cr		<i>cracked seed coat</i> ; recessive to <i>Cr</i> (non- cracked) seed coat; <i>cr</i> from 'Leeby' and <i>Cr</i> from 'Kaho' and 'Congo'.	El-Hafez et al., 1981	-	?
d	-	<i>dotted seed coat</i> ; black dotted seeds when dominant for color genes <i>r</i> , <i>t</i> , and <i>w</i> ; <i>d</i> is a specific modifier of black seed coat color wherein <i>RR TT WW DD</i> is solid black and <i>RR TT WW dd</i> is dotted black seed coat; <i>d</i> from 'Klondike' and 'Hope Giant'; <i>D</i> from 'Winter Queen'.	Poole et al., 1941	Poole, 1944; Kanda, 1951	С
db	-	<i>Resistance to gummy stem blight</i> caused by <i>Didymella bryoniae</i> ; <i>db</i> from PI 189225; <i>Db</i> from 'Charleston Gray'.	Norton, 1979	-	Р
dg	-	<i>delayed green</i> ; cotyledons and young leaves are initially pale green but later develop chlorophyll; first reported to be hypostatic to <i>I-dg</i> ; more recent evidence indicates a simple recessive; <i>dg</i> from breeding line 'Pale 90'; <i>Dg</i> from 'Allsweet'.	Rhodes, 1986	-	?
Dia-1	-	Diaphorase-1	Navot et al., 1990	-	М
dw-1	-	<i>dwarf-1</i> ; short internodes, due to fewer and shorter cells than normal forms; allelic	Mohr, 1956	Liu and Loy, 1972	C

		to dw - l^s ; dw - l from 'Bush Desert King';			
		Dw-1 from 'Sugar Baby' and 'Vine Desert			
		e .			
$dw-1^s$		King'.	Denstin and		0
aw-1	-	<i>short vine;</i> allelic to <i>dw-1</i> ; vine length	Dyutin and	-	?
		intermediate between normal and dwarf;	Afanas'eva, 1987		
		hypocotyl somewhat longer than normal			
		vine and considerably longer than dwarf;			
		dw - l^s recessive to normal; dw - l^s from			
		'Somali Local' (All-Union Research			
		Institute of Plant Growing No.4641).			
dw-2	-	dwarf-2; short internodes, due to fewer	Liu and Loy, 1972	Mohr and	?
		cells; <i>dw-1</i> from inbred line WB-2; <i>Dw-2</i>		Sandhu, 1975	
		from 'Sugar Baby' and 'Vine Desert King'.			
dw-3		dwarf-3; dwarf with fewer leaf lobes	Hexun et al., 1998	-	?
		(intermediate between normal leaf and			
		non-lobed leaf); dw-3 from 'Dwarf Male-			
		Sterile Watermelon (DMSW)'; Dw-3 from			
		'Changhui', 'Fuyandagua', and 'America B'.			
е	t	<i>explosive rind</i> ; thin, tender rind, bursting	Porter, 1937	Poole, 1944	?
	-	when cut; e from 'California Klondike'; E	,		
		from 'Thurmond Gray'.			
eg	-	<i>egusi seed</i> ; immature seeds with fleshy	Gusmini et al., 2003	-	С
-8		pericarp, becoming normal at maturity; <i>eg</i>			Ũ
		from PI 490383 selection NCG-529 and PI			
		560006; <i>Eg</i> from 'Calhoun Gray' and			
		'Charleston Gray'.			
Est-1	-	<i>Esterase-1</i> ; one of six codominant alleles,	Navot et al., 1990;	-	М
100		each regulating one band; found in <i>C</i> .	Navot and Zamir,		
		lanatus.	1986, 1987		
$Est-l^{T}$	-	<i>Esterase-1^{I}</i> ; one of six codominant alleles,	Navot et al., 1990;	-	М
151 1		each regulating one band; found in <i>C</i> .	Navot and Zamir,		111
		<i>lanatus</i> var. <i>citroides</i> and <i>C. colocynthis</i> .	1986, 1987		
$Est-l^2$	_	<i>Esterase-1</i> ² ; one of six codominant alleles,	Navot et al., 1990;	-	М
L31-1	_	each regulating one band; found in <i>C</i> .	Navot et al., 1990, Navot and Zamir,	-	111
		colocynthis.	1986, 1987		
Eat 13		<i>Esterase-1</i> ³ : one of six codominant alleles.			М
$Est-1^3$	-	, , , , , , , , , , , , , , , , , , , ,	Navot et al., 1990;	-	IVI
		each regulating one band; found in	Navot and Zamir,		
Γ \downarrow 14		Praecitrullus fistulosus.	1986, 1987		M
$Est-l^4$	-	<i>Esterase-1</i> ⁴ ; one of six codominant alleles,	Navot et al., 1990;	-	Μ
		each regulating one band; found in <i>C</i> .	Navot and Zamir,		
5		ecirrhosus.	1986, 1987		
$Est-1^5$	-	<i>Esterase-1</i> ⁵ ; one of six codominant alleles,	Navot et al., 1990;	-	М
		each regulating one band; found in	Navot and Zamir,		
		Acanthosicyos naudinianus.	1986, 1987		
Est-2	-	<i>Esterase-2</i> ; one of five codominant alleles,	Navot et al., 1990;	-	М
		each regulating one band; found in C.	Navot and Zamir,		
		lanatus.	1986, 1987		
$Est-2^{I}$	-	<i>Esterase-2</i> ^{1} ; one of five codominant	Navot et al., 1990;	-	М
		alleles, each regulating one band; found in	Navot and Zamir,		
		C. colocynthis.	1986, 1987		
$Est-2^2$	-	<i>Esterase-2</i> ² ; one of five codominant	Navot et al., 1990;	-	Μ

		alleles, each regulating one band; found in <i>C. colocynthis</i> .	Navot and Zamir, 1986, 1987		
<i>Est-2³</i>	-	<i>Esterase-2³</i> ; one of five codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
<i>Est-2</i> ⁴	-	<i>Esterase-2</i> ⁴ ; one of five codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
f	-	<i>furrowed fruit surface</i> ; recessive to smooth; type inbreds not given; <i>f</i> like 'Stone Mountain' or 'Black Diamond'; <i>F</i> like 'Mickylee'.	Poole, 1944	-	?
Fdp-1	-	Fructose 1,6 diphosphatase-1.	Navot et al., 1990; Navot and Zamir, 1986	-	М
Fo-1	-	<i>Fusarium wilt resistance for race 1</i> ; dominant gene for resistance to race 1 of <i>Fusarium oxysporum</i> f. sp. <i>niveum</i> ; <i>Fo-1</i> from 'Calhoun Gray' and 'Summit'; <i>fo-1</i> from 'New Hampshire Midget'.	Henderson et al., 1970	Netzer and Weintall, 1980	С
For-1	-	Fructose 1,6 diphosphatase-1.	Navot et al., 1990	-	М
Fwr	-	<i>Fruit fly resistance caused by Dacus cucurbitae</i> ; dominant to susceptibility; <i>Fwr</i> from breeding lines J 18-1 and J 56-1; <i>fwr</i> from 'New Hampshire Midget', 'Bykovski', 'Red Nectar' and breeding line 'J 20-1'.	Khandelwal and Nath, 1978	-	?
g	d	<i>light green fruit rind pattern</i> ; light green fruit recessive to dark green (G) and striped green (g^s); g from 'Thurmond Gray' and G from 'California Klondike'.	Weetman, 1937	Poole, 1944; Porter, 1937	?
g^s	d ^s	<i>striped green fruit rind pattern</i> ; recessive to dark green but dominant to light green skin; g ^s from 'Golden Honey'; G from 'California Klondike'.	Weetman, 1937	Poole, 1944	С
Gdh- 1	-	<i>Glutamate dehydrogenase-1</i> ; isozyme located in cytosol.	Navot and Zamir, 1986	-	М
Gdh- 2	-	<i>Glutamate dehydrogenase-2</i> ; isozyme located in plastids.	Navot et al., 1990; Navot and Zamir, 1986	-	М
gf	-	<i>light green flower color</i> ; <i>gf</i> from 'KW-695' and 'Dalgona'; <i>Gf</i> from Korean watermelon accession 'SS-4'.	Kwon and Dane, 1999	-	?
gms	msg	<i>glabrous male sterile;</i> foliage lacking trichomes; male sterile caused by chromosome desynapsis (named glabrous male sterile by Robinson*); <i>gms</i> from 'Sugar Baby' irradiated with gamma rays.	Watts, 1962, 1967	Robinson et al., 1976*; Ray and Sherman, 1988	?
go	С	golden yellow color of older leaves and	Barham, 1956	Robinson et al.,	С

		<i>mature fruit</i> ; (named golden by Robinson*); <i>go</i> from 'Royal Golden'; <i>Go</i>		1976*	
		from 'NC 34-9-1' and 'NC 34-2-1'.			
Got-1	-	<i>Glutamate oxaloacetate transaminase-1;</i>	Navot et al., 1990;	_	М
001 1		one of four codominant alleles, each	Navot and Zamir,		111
		regulating one band; found in <i>C. lanatus</i> .	1986, 1987;		
		regulating one build, found in C. tanatas.	Zamir et al., 1984		
Got-	-	<i>Glutamate oxaloacetate transaminase-1;</i>	Navot et al., 1990;	_	М
l^l		one of four codominant alleles, each	Navot and Zamir,		
-		regulating one band; found in <i>C</i> .	1986, 1987; Zamir et		
		colocynthis and Praecitrullus fistulosus.	al., 1984		
Got-	-	<i>Glutamate oxaloacetate transaminase-1</i> ² ;	Navot et al., 1990;	_	М
l^2		one of four codominant alleles, each	Navot and Zamir,		
-		regulating one band; found in <i>C. lanatus</i>	1986, 1987; Zamir et		
		var. citroides.	al., 1984		
Got	-	Glutamate oxaloacetate transaminase- 1^3 ;	Navot et al., 1990;	_	М
Got		one of four codominant alleles, each	Navot and Zamir,		
		regulating one band; found in	1986, 1987; Zamir et		
		Acanthosicyos naudinianus.	al., 1984		
Got-2	-	<i>Glutamate oxaloacetate transaminase-2;</i>	Navot et al., 1990;	_	М
007 -		one of five codominant alleles, each	Navot and Zamir,		
		regulating one band; found in <i>C. lanatus</i> .	1986, 1987; Zamir et		
			al., 1984		
Got-	-	<i>Glutamate oxaloacetate transaminase-2</i> ¹ ;	Navot et al., 1990;	_	М
$Got-2^l$		one of five codominant alleles, each	Navot and Zamir,		
-		regulating one band; found in <i>C</i> .	1986, 1987; Zamir et		
		colocynthis.	al., 1984		
Got-	-	<i>Glutamate oxaloacetate transaminase-2^2;</i>	Navot et al., 1990;	-	М
2^{2}		one of five codominant alleles, each	Navot and Zamir,		
		regulating one band; found in <i>C</i> .	1986, 1987; Zamir et		
		ecirrhosus.	al., 1984		
Got-	-	Glutamate oxaloacetate transaminase- 2^3 ;	Navot et al., 1990;	-	М
2^{3}		one of five codominant alleles, each	Navot and Zamir,		
		regulating one band; found in	1986, 1987; Zamir et		
		Praecitrullus fistulosus.	al., 1984		
Got-	-	<i>Glutamate oxaloacetate transaminase-2</i> ⁴ ;	Navot et al., 1990;	-	М
2^{4}		One of five codominant alleles, each	Navot and Zamir,		
		regulating one band; found in	1986, 1987; Zamir et		
		Acanthosicyos naudinianus.	al., 1984		
Got-3	-	<i>Glutamate oxaloacetate transaminase-3.</i>	Zamir et al., 1984	-	М
Got-4	-	<i>Glutamate oxaloacetate transaminase-4.</i>	Navot et al., 1990;	-	М
			Zamir et al., 1984		
hsp-	_	<i>heat shock protein 70</i> ; one gene	Wimmer et al., 1997	-	M
70		presequence 72-kDa hsp70 is modulated			141
, 0		differently in glyoxysomes and plastids.			
i-dg	t	<i>inhibitor of delayed green</i> ; Epistatic to <i>dg</i> ;	Rhodes, 1986		L
ı=ug	_	<i>I-dg I-dg dgdg</i> plants are pale green; and <i>i</i> -	1110405, 1700		
		<i>dg i-dg dgdg</i> plants are normal; <i>dg</i> from			
	1	breeding line Pale 90; Dg from 'Allsweet';	1		

	<i>i-dg</i> gene was lost when advanced inbreds were made.			
-	Isocitrate dehydrogenase-1	Zamir et al., 1984	-	М
i	<i>inhibitor of canary yellow</i> , resulting in red flesh (renamed by Rhodes and Dane*); <i>CC</i> <i>YY I-C I-C</i> from 'Yellow Baby' F1 and 'Yellow Doll' F1; <i>cc y⁰y⁰ I-C I-C</i> from 'Tendersweet Orange Flesh'; <i>cc yy I-C I-C</i> from 'Golden Honey'; <i>cc YY i-C i-C</i> from	Henderson et al., 1998	Rhodes and Dane, 1999*	С
-	<i>juvenile albino</i> ; chlorophyll in seedlings, leaf margins, and fruit rind reduced when grown under short days; <i>ja</i> from 'Dixielee mutant' and 'G17AB' F2; <i>Ja</i> from 'Sweet Princess' and '20J57'.	Zhang et al., 1996b	-	?
-	<i>long (or large) seeds;</i> interacts with <i>s</i> ; long recessive to medium or short; <i>LL SS</i> for medium, <i>ll SS</i> for long, and <i>LL ss</i> or <i>ll</i> <i>ss</i> for short seed; <i>ll SS</i> from 'Peerless'; <i>LL</i> <i>SS</i> from 'Klondike'; <i>LL ss</i> from 'Baby Delight'.	Poole et al., 1941	-	?
-	Leucine aminopeptidase-1.	Navot et al., 1990; Navot and Zamir, 1986	-	М
-	<i>mottled skin</i> ; greenish white mottling of fruit skin; <i>m</i> from 'Iowa Belle' and <i>M</i> from 'Japan 4'.	Weetman, 1937	Poole, 1944	?
-	<i>Malic dehydrogenase-1</i> ; one of two codominant alleles, each regulating one band; found in <i>C. lanatus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
-	<i>Malic dehydrogenase-1</i> ¹ ; one of two codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
-	<i>Malic dehydrogenase-2</i> ; one of three codominant alleles, each regulating one band; found in <i>C. lanatus</i> .	Navot and Zamir, 1987	-	М
-	<i>Malic dehydrogenase-2</i> ¹ ; one of three codominant alleles, each regulating one band; found in <i>C. colocynthis</i> .	Navot and Zamir, 1987	-	М
-	<i>Malic dehydrogenase-2</i> ² ; one of three codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot and Zamir, 1987	-	М
-	<i>Malic enzyme-1;</i> one of three codominant alleles, each regulating one band; found in <i>C. lanatus.</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	M
-	<i>Malic enzyme-1¹;</i> one of three codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
	i - - - - -	 were made. Isocitrate dehydrogenase-1 inhibitor of canary yellow, resulting in red flesh (renamed by Rhodes and Dane*); CC YY I-C I-C from 'Yellow Baby' F1 and 'Yellow Doll' F1; cc y⁰y⁰ I-C I-C from 'Tendersweet Orange Flesh'; cc yy I-C I-C from 'Golden Honey'; cc YY i-C i-C from 'Sweet Princess'. juvenile albino; chlorophyll in seedlings, leaf margins, and fruit rind reduced when grown under short days; ja from 'Dixielee mutant' and 'G17AB' F2; Ja from 'Sweet Princess' and '20J57'. long (or large) seeds; interacts with s; long recessive to medium or short; LL SS for medium, Il SS for long, and LL ss or Il ss for short seed; Il SS from 'Peerless'; LL SS from 'Klondike'; LL ss from 'Baby Delight'. Leucine aminopeptidase-1. mottled skin; greenish white mottling of fruit skin; m from 'Iowa Belle' and M from 'Japan 4'. Malic dehydrogenase-1'; one of two codominant alleles, each regulating one band; found in C. lanatus. Malic dehydrogenase-2'; one of two codominant alleles, each regulating one band; found in C. lanatus. Malic dehydrogenase-2'; one of three codominant alleles, each regulating one band; found in C. colocynthis. Malic dehydrogenase-2'; one of three codominant alleles, each regulating one band; found in C. colocynthis. Malic dehydrogenase-2'; one of three codominant alleles, each regulating one band; found in Praecitrullus fistulosus. Malic dehydrogenase-2'; one of three codominant alleles, each regulating one band; found in Praecitrullus fistulosus. Malic dehydrogenase-2'; one of three codominant alleles, each regulating one band; found in Praecitrullus fistulosus. Malic denydrogenase-1'; one of three codominant alleles, each regulating one band; found in Praecitrullus fistulosus. 	were made. Zamir et al., 1984 i inhibitor of canary yellow, resulting in red flesh (renamed by Rhodes and Dane*); CC YY I-C I-C from 'Yellow Baby' F1 and 'Yellow Doll' F1; cc y9'0-I-C I-C from 'Tendersweet Orange Flesh'; cc yy I-C I-C from 'Golden Honey'; cc YY I-C I-C from 'Sweet Princess'. Henderson et al., 1998 - juvenile albino; chlorophyll in seedlings, leaf margins, and fruit rind reduced when grown under short days; ja from 'Dixielee mutant' and G17AB' F2; Ja from 'Sweet Princess' and '20157'. Zhang et al., 1996b - long (or large) seeds; interacts with s; long recessive to medium or short; LL SS for medium, Il SS for long, and LL ss or Il ss for short seed; Il SS from 'Peerless'; LL SS from 'Klondike'; LL ss from 'Baby Delight'. Poole et al., 1941 - Leucine aminopeptidase-1. Navot et al., 1990; Navot and Zamir, 1986 - mattled skin; greenish white mottling of fruit skin; m from 'Iowa Belle' and M from 'Iapan 4'. Navot and Zamir, 1986 - Malic dehydrogenase-1'; one of two codominant alleles, each regulating one band; found in C. lanatus. Navot and Zamir, 1987; Zamir et al., 1987 - Malic dehydrogenase-2', one of three codominant alleles, each regulating one band; found in C. lanatus. Navot and Zamir, 1987 - Malic dehydrogenase-2', one of three codominant alleles, each regulating one band; found in C. lanatus. Navot and Zamir, 1987 - Malic dehydrogenase-2', one of thre	were made. Asocitrate dehydrogenase-1 Zamir et al., 1984 - 1 <i>inhibitor of canary yellow</i> , resulting in red flesh (renarry yellow, abyl F1 and Yellow Doll' F1; <i>cc</i> , <i>y0'p I-C1-C</i> from Tendersweet Orange Flesh'; <i>cc</i> , <i>yy I-C1-C</i> from Sweet Princess! Henderson et al., 1998 - - <i>juvenile albino</i> ; chlorophyll in seedings, leaf margins, and fruit rind reduced when grown under short days; <i>ja</i> from 'Dixielee mutant' and 'G17AB' F2; <i>Ja</i> from 'Sweet Princess' and 20157. Zhang et al., 1996b - - <i>long (or large) seeds</i> ; interacts with <i>s</i> ; for medium, <i>II</i> SS for long, and <i>LL</i> ss or <i>II</i> ss for short seed; <i>II</i> SS from 'Peerless'; <i>LL</i> SS from 'Klondike'; <i>LL</i> ss from 'Baby Delight'. Poole et al., 1941 - - <i>long (or large) seeds</i> ; interacts with <i>s</i> ; for medium, <i>II</i> SS for long, and <i>LL</i> ss or <i>II</i> ss for short seed; <i>II</i> SS from 'Peerless'; <i>LL</i> SS from 'Klondike'; <i>LL</i> ss from 'Baby Delight'. Navot et al., 1990; Navot and Zamir, 1986 - - <i>Malic dehydrogenase-1</i> ; one of two codominant alleles, each regulating one band; found in <i>C. lanatus</i> . Navot and Zamir, 1987; Zamir et al., 1984 - - <i>Malic dehydrogenase-2</i> , one of three codominant alleles, each regulating one band; found in <i>C. lanatus</i> . Navot and Zamir, 1987 - - <i>Malic dehydrogenase-2</i> , one of three codominant alleles, each regulating one band; found in <i>C. lanatus</i> . Navot and Zamir, 1987 - -

		alleles, each regulating one band; found in <i>C. colocynthis</i> .	Navot and Zamir, 1986, 1987; Zamir et al., 1984		
Me-2	-	Malic enzyme-2.	Zamir et al., 1984	-	М
ms-1	ms	<i>male sterile;</i> plants with small, shrunken anthers and aborted pollen; <i>ms-1</i> from 'Nongmei 100'; <i>Ms</i> from most cultivars, e.g. 'Allsweet'.	Zhang and Wang, 1990	Zhang et al., 1994b	?
ms ^{dw}	-	<i>male sterile, dwarf; ms^{dw}</i> from 'Dwarf Male-Sterile Watermelon (DMSW)'; non- dwarf fertile from 'Changhui', 'Fuyandagua', and 'America B'.	Huang et al., 1998	-	?
ms-2		<i>male sterile</i> with high seed productivity; <i>ms-2</i> from 'Kamyzyakskii'; <i>Ms-2</i> from cultivars like 'Allsweet'.	Dyutin, and Sokolov, 1990	-	?
nl	-	<i>nonlobed leaves</i> ; leaves lack the typical lobing; incomplete dominance; (named nonlobed by Robinson*); <i>nl</i> from spontaneous mutation of 'Black Diamond'.	Mohr, 1953	Robinson et al., 1976*	С
0	-	<i>Elongate fruit</i> ; incompletely dominant to spherical, so that <i>Oo</i> is oval; <i>O</i> from 'Long Iowa Belle'; <i>o</i> from 'Round Iowa Belle', 'China 23', 'Japan 4', and 'Japan 6'.	Weetman, 1937	Poole and Grimball, 1945	?
р	-	<i>pencilled lines on skin</i> ; inconspicuous stripes; greenish-white mottling* (called pencilled by Robinson**); recessive to netted fruit; <i>p</i> from 'Long Iowa Belle' and <i>P</i> from 'Japan 6'.	Weetman, 1937*	Poole and Grimball, 1945; Robinson et al., 1976**	?
Pgd-1	6 Pgdh -1	6-Phosphogluconate dehydrogenase-1; one of three codominant alleles, each regulating one plastid band; found in C. lanatus.	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgd- 1 ¹	6 Pgdh -1 ¹	6-Phosphogluconate dehydrogenase-1 ¹ ; one of three codominant alleles, each regulating one plastid band; found in Praecitrullus fistulosus.	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgd- 1 ²	6 Pgdh -1 ²	6-Phosphogluconate dehydrogenase-1 ² ; one of three codominant alleles, each regulating one plastid band; found in Acanthosicyos naudinianus.	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	M
Pgd-2	6 Pgdh -2	6-Phosphogluconate dehydrogenase-2; one of five codominant alleles, each regulating one cytosolic band; found in <i>C</i> . <i>lanatus</i> .	Navot and Zamir, 1986; Zamir et al., 1984	-	М
Pgd- 2 ¹	$6 \\ Pgdh \\ -2^{l}$	6-Phosphogluconate dehydrogenase-2 ¹ ; one of five codominant alleles, each regulating one cytosolic band; found in <i>C</i> . <i>ecirrhosus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
$Pgd-2^2$	6 Pgdh	<i>6-Phosphogluconate dehydrogenase-2</i> ² ; one of five codominant alleles, each	Navot and Zamir, 1987; Zamir et al.,	-	М

	-2^2	regulating one cytosolic band; found in <i>Praecitrullus fistulosus</i> .	1984		
$Pgd-2^3$	6 Pgdh -2 ³	6-Phosphogluconate dehydrogenase-2 ³ ; one of five codominant alleles, each regulating one cytosolic band; found in <i>C.</i> <i>colocynthis</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
Pgd- 2 ⁴	$6 \\ Pgdh \\ -2^4$	6-Phosphogluconate dehydrogenase-2 ⁴ ; one of five codominant alleles, each regulating one cytosolic band; found in <i>Acanthosicyos naudinianus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
Pgi-1	-	<i>Phosphoglucoisomerase-1</i> ; one of three codominant alleles, each regulating one plastid band; found in <i>C. lanatus</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Pgi-1 ¹	-	<i>Phosphoglucoisomerase-1</i> ¹ ; one of three codominant alleles, each regulating one plastid band; found in <i>C. colocynthis</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Pgi-1 ²	-	<i>Phosphoglucoisomerase-1</i> ² ; one of three codominant alleles, each regulating one plastid band; found in <i>Acanthosicyos naudinianus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Pgi-2	-	<i>Phosphoglucoisomerase-2;</i> one of six codominant alleles, each regulating one cytosolic band; found in <i>C. lanatus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgi-2 ¹	-	<i>Phosphoglucoisomerase-2¹;</i> one of six codominant alleles, each regulating one cytosolic band; found in <i>C. lanatus and C. colocynthis.</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgi-2 ²	-	<i>Phosphoglucoisomerase-2²;</i> one of six codominant alleles, each regulating one cytosolic band; found in <i>C. ecirrhosus.</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgi-2 ³	-	<i>Phosphoglucoisomerase-2³</i> ; one of six codominant alleles, each regulating one cytosolic band; found in <i>Praecitrullus fistulosus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgi-2 ⁴	-	<i>Phosphoglucoisomerase-2</i> ⁴ ; one of six codominant alleles, each regulating one cytosolic band; found in <i>C. lanatus</i> var. <i>citroides</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgi-2 ⁵	-	<i>Phosphoglucoisomerase-2⁵;</i> one of six codominant alleles, each regulating one cytosolic band; found in <i>Acanthosicyos naudinianus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgm- 1	-	<i>Phosphoglucomutase-1</i> ; one of four codominant alleles, each regulating one plastid band; found in <i>C. lanatus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgm- 1 ¹	-	<i>Phosphoglucomutase-1</i> ¹ ; one of four codominant alleles, each regulating one plastid band; found in <i>C. colocynthis</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М

Pgm- 1 ²	-	<i>Phosphoglucomutase-1</i> ² ; one of four codominant alleles, each regulating one plastid band; found in <i>Acanthosicyos naudinianus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgm- 1 ³	-	<i>Phosphoglucomutase-1³</i> ; one of four codominant alleles, each regulating one plastid band; found in <i>Praecitrullus fistulosus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Pgm- 2	-	<i>Phosphoglucomutase-2</i> ; one of four codominant alleles, each regulating one cytosolic band; found in C. <i>lanatus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	Μ
Pgm- 2 ¹	-	<i>Phosphoglucomutase-2</i> ¹ ; one of four codominant alleles, each regulating one cytosolic band; found in <i>Acanthosicyos naudinianus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
Pgm- 2 ²	-	<i>Phosphoglucomutase-2</i> ² ; one of four codominant alleles, each regulating one cytosolic band; found in <i>C. lanatus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
Pgm- 2 ³	-	<i>Phosphoglucomutase-2³</i> ; one of four codominant alleles, each regulating one cytosolic band; found in <i>Praecitrullus fistulosus</i> .	Navot and Zamir, 1987; Zamir et al., 1984	-	М
рт	-	<i>powdery mildew susceptibility;</i> susceptibility to <i>Sphaerotheca fuliginea</i> is recessive; <i>pm</i> from PI 269677; <i>Pm</i> from 'Sugar Baby' and most cultivars.	Robinson et al., 1975	-	Р
Prx-1	-	<i>Peroxidase-1</i> ; one of seven codominant alleles, each regulating one band; found in <i>C. lanatus.</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Prx- l^{l}	-	<i>Peroxidase-1</i> ¹ ; one of seven codominant alleles, each regulating one band; found in <i>C. colocynthis.</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
$\frac{Prx}{l^2}$	-	$Peroxidase-1^2$; one of seven codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
$Prx-l^3$	-	<i>Peroxidase-1</i> ^{3} ; one of seven codominant alleles, each regulating one band; found in <i>C. lanatus.</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Prx- 1 ⁴	-	<i>Peroxidase-1</i> ^{4} ; one of seven codominant alleles, each regulating one band; found in <i>C. ecirrhosus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Prx- 1 ⁵	-	<i>Peroxidase-1⁵</i> ; one of seven codominant alleles, each regulating one band; found in <i>C. lanatus and C. colocynthis.</i>	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Prx- 1 ⁶	-	<i>Peroxidase-1</i> ⁶ ; one of seven codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Prx-2	-	Peroxidase-2.	Navot and Zamir, 1987	-	M
Prx-3	-	Peroxidase-3.	Navot and Zamir, 1987	-	М

r	-	<i>red seed coat</i> ; genes <i>r</i> , <i>t</i> and <i>w</i> interact to	Poole et al., 1941	-	?
		produce seeds of different colors; black			
		from 'Klondike' (<i>RR TT WW</i>); clump from			
		'Sun Moon and Stars' (<i>RR TT ww</i>); tan			
		from 'Baby Delight' (<i>RR tt WW</i>); white			
		with tan tip from 'Pride of Muscatine' (<i>RR</i> <i>tt ww</i>); red from citron (rr tt WW); white			
		with pink tip from 'Peerless' (<i>rr tt ww</i>).			
S	-	<i>short (or small) seeds;</i> epistatic to <i>l</i> ; long	Poole et al., 1941		?
5		recessive to medium or short; <i>LL SS</i> for			·
		medium, <i>ll SS</i> for long, and <i>LL ss</i> or <i>ll ss</i>			
		for short seed; <i>ll SS</i> from 'Peerless'; <i>LL SS</i>			
		from 'Klondike'; LL ss from 'Baby			
		Delight'.			
Sat	-	Serine acetyltransferase; catalyzes the	Saito et al., 1997	-	М
		formation of O-acetylserine from serine			
		and acetyl-CoA.			
Skdh-	-	Shikimic acid dehydrogenase-1.	Zamir et al., 1984	-	Μ
<u>l</u>					
Skdh-	-	Shikimic acid dehydrogenase-2; one of six	Navot et al., 1990;	-	М
2		codominant alleles, each regulating one band.	Navot and Zamir,		
Skdh-		<i>Shikimic acid dehydrogenase-2¹</i> ; one of	1986, 1987 Navot et al., 1990;	_	М
2^l	-	six codominant alleles, each regulating	Navot et al., 1990, Navot and Zamir,	-	111
2		one band; found in <i>C. colocynthis</i> .	1986, 1987		
Skdh-	-	Shikimic acid dehydrogenase-2 ² ; one of	Navot et al., 1990;	-	М
2^2		six codominant alleles, each regulating	Navot and Zamir,		
		one band; found in <i>C. colocynthis</i> .	1986, 1987		
Skdh-	-	<i>Shikimic acid dehydrogenase-2³</i> ; one of	Navot et al., 1990;	-	М
2^{3}		six codominant alleles, each regulating	Navot and Zamir,		
		one band; found in Acanthosicyos	1986, 1987		
		naudinianus.			
Skdh-	-	Shikimic acid dehydrogenase- 2^4 ; one of	Navot et al., 1990;	-	Μ
2^4		six codominant alleles, each regulating	Navot and Zamir,		
		one band; found in <i>C. ecirrhosus</i> .	1986, 1987		
Skdh-	_	<i>Shikimic acid dehydrogenase-2⁵;</i> one of	Navot et al., 1990;	-	М
2^5		six codominant alleles, each regulating	Navot and Zamir,		111
-		one band; found in <i>Praecitrullus</i>	1986, 1987		
		fistulosus.			
slv	-	seedling leaf variegation; conferred by a	Provvidenti, 1994	-	Р
		single recessive gene in PI 482261; linked			
		or pleiotropic with a dominant allele for			
		resistance to cool temperature injury			
		(20°C for greenhouse-grown plants); <i>slv</i>			
		from PI 482261 (resistant to ZYMV-FL);			
<u> </u>		<i>Slv</i> from 'New Hampshire Midget'.			
Sod-1	-	Superoxide dismutase-1; one of three	Navot et al., 1990;	-	М
		codominant alleles, each regulating one	Navot and Zamir,		
		band; found in <i>C. lanatus</i> .	1986, 1987; Zamir et		
			al., 1984		

$Sod-1^1$	-	Superoxide dismutase-1 ¹ ; one of three codominant alleles, each regulating one band; found in <i>C. colocynthis</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
$Sod-l^2$	-	Superoxide dismutase-1 ² ; one of three codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987; Zamir et al., 1984	-	М
Sod-2	-	<i>Superoxide dismutase-2</i> ; one of two codominant alleles, each regulating one band; found in <i>C. lanatus</i> .	Navot and Zamir, 1987	-	М
$Sod-2^{1}$	-	Superoxide dismutase-2 ¹ ; one of two codominant alleles, each regulating one band; found in Acanthosicyos naudinianus.	Navot and Zamir, 1987	-	М
Sod-3	-	<i>Superoxide dismutase-3</i> ; one of two codominant alleles, each regulating one band; found in <i>C. lanatus</i> .	Navot and Zamir, 1987	-	М
<i>Sod-</i> 3 ¹	-	<i>Superoxide dismutase-3¹;</i> one of two codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot and Zamir, 1987	-	М
Sp	-	Spotted cotyledons, leaves and fruit; dominant to uniform foliage and fruit color; Sp from 'Sun, Moon and Stars'* and 'Moon and Stars'**; sp from 'Allsweet'.	Poole, 1944*	Rhodes, 1986**	С
Spr-1	-	Seed protein-1.	Navot and Zamir, 1986	-	М
Spr-2	-	Seed protein-2.	Navot and Zamir, 1986	-	М
Spr-3	-	Seed protein-3.	Navot and Zamir, 1986	-	М
Spr-4	Sp-4	Seed protein-4.	Navot et al., 1990; Navot and Zamir, 1986	-	М
Spr-5	Sp-5	Seed protein-5.	Navot et al., 1990; Navot and Zamir, 1986	-	М
su	Bi, su ^{Bi}	suppressor of bitterness; (su named by Robinson*); non-bitter fruit; su from 'Hawkesbury'; Su from bitter-fruited mutant of 'Hawkesbury'; bitterness in C. colocynthis is due to Su Su genotype.	Chambliss et al., 1968	Robinson et al., 1976*	?
t	b'	<i>tan seed coat</i> ; genes <i>r</i> , <i>t</i> and <i>w</i> interact to produce seeds of different colors; black from 'Klondike' (<i>RR TT WW</i>); clump from 'Sun Moon and Stars' (<i>RR TT ww</i>); tan from 'Baby Delight' (<i>RR tt WW</i>); white with tan tip from 'Pride of Muscatine' (<i>RR</i> <i>tt ww</i>); red from citron (rr tt WW); white with pink tip from 'Peerless' (<i>rr tt ww</i>).	McKay, 1936	Poole et al., 1941	?

Ti	-	<i>Tiny seed;</i> dominant over medium seed (<i>ti</i>); <i>Ti</i> from 'Sweet Princess'; <i>ti</i> from 'Fujihikari'.	Tanaka et al., 1995	-	?
tl	bl	<i>tendrilless</i> (formerly called <i>branchless*</i>), after 4th or 5th node, vegetative axillary buds are transformed into flower buds and leaf shape is altered; <i>tl</i> from 'Early Branchless'; <i>Tl</i> from breeding lines 'G17AB', 'ASS-1', 'YF91-1-2', and S173 breeding line.	Rhodes, Zhang, Baird and Knapp, 1999; Zhang, Rhodes, Baird and Skorupska, 1996a	Lin, Tong, Wang, Zhang and Rhodes, 1992*	?
Tpi-	-	<i>Triosephosphatase isomerase-1</i> . one of four codominant alleles, each regulating one band; found in <i>C. lanatus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Tpi-1 ¹	-	Triosephosphatase isomerase- 1^1 ; one of four codominant alleles, each regulating one band; found in <i>C. colocynthis</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Tpi-1 ²	-	<i>Triosephosphatase isomerase-1</i> ² ; one of four codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Tpi-1 ³	-	<i>Triosephosphatase isomerase-1³</i> ; one of four codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus</i> .	Navot et al., 1990; Navot and Zamir, 1986, 1987	-	М
Tpi-2	-	<i>Triosephosphatase isomerase-2</i> ; one of three codominant alleles, each regulating one band; found in <i>C. lanatus</i> .	Navot and Zamir, 1987	-	М
Tpi-2 ¹	-	<i>Triosephosphatase isomerase-2</i> ¹ ; one of three codominant alleles, each regulating one band; found in <i>Acanthosicyos naudinianus</i> .	Navot and Zamir, 1987	-	М
Tpi-2 ²	-	<i>Triosephosphatase isomerase-2</i> ² ; one of three codominant alleles, each regulating one band; found in <i>Praecitrullus fistulosus</i> .	Navot and Zamir, 1987	-	М
ts	tss	<i>tomato seed</i> ; seeds smaller than short (<i>LLss</i> or <i>llss</i>), almost the size of a tomato seed; <i>ts</i> from tomato seed Sugar Baby mutant; <i>Ts</i> from 'Gn-1'.	Zhang et al., 1994a	Zhang, 1996	С
Ure-1	-	Ureaase-1.	Navot and Zamir, 1987	-	М
W	-	<i>white seed coat</i> ; genes <i>r</i> , <i>t</i> and <i>w</i> interact to produce seeds of different colors; black from 'Klondike' (<i>RR TT WW</i>); clump from 'Sun Moon and Stars' (<i>RR TT ww</i>); tan from 'Baby Delight' (<i>RR tt WW</i>); white with tan tip from 'Pride of Muscatine' (<i>RR tt ww</i>); red from citron (rr tt WW); white with pink tip from 'Peerless' (<i>rr tt ww</i>).	Poole et al., 1941	-	?
Wf	W	<i>White flesh</i> ; (named white flesh by Robinson*); <i>Wf</i> is epistatic to <i>B</i> (<i>Y</i> renamed <i>B</i> by Henderson); <i>WfWf BB</i> or	Shimotsuma, 1963	Robinson et al., 1976*	?

		<i>WfWf bb</i> white fleshed; <i>wfwf BB</i> yellow fleshed; <i>wfwf bb</i> red fleshed; <i>B</i> from breeding line V.No.3 and <i>b</i> from V.No.1; flesh color segregated into 12 white, 3 yellow and 1 red in the F2.			
У	rd	<i>yellow flesh</i> ; recessive to red flesh; <i>y</i> from 'Golden Honey'; <i>Y</i> from 'Angeleno' (black seeded).	Porter, 1937	Poole, 1944; Henderson, 1989; Henderson et al., 1998;	C
yo	-	<i>orange flesh</i> ; allelic to <i>y</i> ; <i>Y</i> (red flesh) is dominant to y^{0} (orange flesh) and <i>y</i> (salmon yellow flesh); y^{O} (orange flesh) is dominant to <i>y</i> (yellow flesh); <i>cc</i> $y^{O}y^{O}$ <i>I-C</i> <i>I-C</i> from 'Tendersweet Orange Flesh'; <i>cc</i> <i>yy I-C I-C</i> from 'Golden Honey'; <i>cc YY i-C</i> <i>i-C</i> from 'Sweet Princess'.	Henderson, 1989; Henderson et al., 1998	Poole, 1944; Porter, 1937	C
Yl	-	<i>Yellow leaf;</i> incompletely dominant to green leaf (<i>yl</i>); <i>Yl</i> from 'Yellow Skin'.	Warid and Abd-El- Hafez, 1976	-	?
zym- FL	zym	<i>Resistance to zucchini yellow mosaic virus (ZYMV-FL);</i> resistance is specific to the Florida strain; zym-FL from PI 482322, PI 482299, PI 482261, and PI 482308.	Provvidenti, 1991	-	Р

^z Asterisks on cultigens and associated references indicate the source of information for each.

Y C = Mutant available from Cucurbit Genetics Cooperative watermelon gene curator; M = molecular marker or isozyme; P = mutants are available as standard cultivars or accessions from the plant introduction collection; ? = availability not known; L = mutant has been lost.

Literature Cited

- 1. Barham, W.S. 1956. A study of the Royal Golden watermelon with emphasis on the inheritance of the chlorotic condition characteristic of this variety. Proc. Amer. Soc. Hort. Sci. 67: 487-489.
- Chambliss, O.L., H.T. Erickson and C.M. Jones. 1968. Genetic control of bitterness in watermelon fruits. Proc. Amer. Soc. Hort. Sci. 93: 539-546.
- Cucurbit Gene List Committee. 1979. New genes for the Cucurbitaceae. Cucurbit Genet. Coop. Rpt. 2: 49-53.
- 4. Cucurbit Gene List Committee. 1982. Update of cucurbit gene list and nomenclature rules. Cucurbit Genet. Coop. Rpt. 5: 62-66.

- Cucurbit Gene List Committee. 1987. Gene list for watermelon. Cucurbit Genet. Coop. Rpt. 10: 106-110.
- Dyutin, K.E. and E.A. Afanas'eva. 1987. "Inheritance of the short vine trait in watermelon." Cytology & Genetics (Tsitologiya i Genetika) 21: 71-73.
- Dyutin, K.E. and S.D. Sokolov. 1990. "Spontaneous mutant of watermelon with male sterility." Cytology & Genetics (Tsitologiya i Genetika) 24: 56-57.
- 8. El-Hafez, A.A.A., A.K. Gaafer, and A.M.M. Allam. 1981. Inheritance of flesh color, seed coat cracks and total soluble solids in

watermelon and their genetic relations. Acta Agron. Acad. Hungaricae 30: 82-86.

- Gusmini, G., T.C. Wehner, and R.L. Jarret. 2003. Inheritance of 'Egusi' seed-type in watermelon (*Citrullus lanatus* var. *lanatus*). J. Hered. 94:(in press).
- Hall, C.V., S.K. Dutta, H.R. Kalia and C.T. Rogerson. 1960. Inheritance of resistance to the fungus *Colletotrichum lagenarium* (Pass.) Ell. and Halst. in watermelons. Proc. Amer. Soc. Hort. Sci. 75: 638-643.
- Henderson, W.R. 1989. Inheritance of orange flesh color in watermelon. Cucurbit Genet. Coop. Rpt. 12: 59-63.
- Henderson, W.R. 1991. Gene List for Watermelon. Cucurbit Genet. Coop. Rpt. 14: 129-138.
- Henderson, W.R. 1992. Corrigenda to the 1991 Watermelon Gene List (CGC 14:129-137). Cucurbit Genet. Coop. Rpt. 15: 110.
- Henderson, W.R., S.F. Jenkins, Jr. and J.O. Rawlings. 1970. The inheritance of Fusarium wilt resistance in watermelon, *Citrullus lanatus* (Thunb.) Mansf. J. Amer. Soc. Hort. Sci. 95: 276-282.
- 15. Henderson, W.R., G.H. Scott and T.C. Wehner. 1998. Interaction of flesh color genes in watermelon. J. Hered. 89: 50-53.
- Huang, H., X. Zhang, Z. Wei, Q. Li, and X. Li. 1998. Inheritance of male-sterility and dwarfism in watermelon [*Citrullus lanatus* (Thunb.) Matsum. and Nakai]. Scientia Horticulturae 74: 175-181.
- 17. Kanda, T. 1951. The inheritance of seed-coat colouring in the watermelon. Jap. J. Genet. 7: 30-48.
- 18. Khandelwal, R.C. and P. Nath. 1978. Inheritance of resistance to fruit fly in watermelon. Can. J. Genet. Cytol. 20: 31-34.
- Kwon, Y.S. and F. Dane. 1999. Inheritance of green flower color (*gf*) in watermelon (*Citrullus lanatus*). Cucurbit Genet. Coop. Rpt. 22: 31-33.
- Layton, D.V. 1937. The parasitism of *Colletotrichum lagenarium* (Pass.) Ells. and Halst. Iowa Agr. Expt. Sta. Ann. Bul. 223.

- Lin, D., T. Wang, Y. Wang, X. Zhang and B.B. Rhodes. 1992. The effect of the branchless gene *bl* on plant morphology in watermelon. Cucurbit Genet. Coop. Rpt. 15: 74-75.
- 22. Liu, P.B.W. and J.B. Loy. 1972. Inheritance and morphology of two dwarf mutants in watermelon. J. Amer. Soc. Hort. Sci. 97: 745-748.
- 23. Love, S.L. and B.B. Rhodes. 1988. Single gene control of anthracnose resistance in *Citrullus*? Cucurbit Genet. Coop. Rpt. 11: 64-67.
- 24. Love, S.L. and B.B. Rhodes. 1991. R309, a selection of *Citrullus colocynthis* with multigenic resistance to *Colletotrichum lagenarium* race 2. Cucurbit Genet. Coop. Rpt. 14: 92-95.
- 25. McKay, J.W. 1936. Factor interaction in *Citrullus*. J. Hered. 27: 110-112.
- Mohr, H.C. 1953. A mutant leaf form in watermelon. Proc. Assn. Southern Agr. Workers 50: 129-130.
- Mohr, H.C. 1956. Mode of inheritance of the bushy growth characteristics in watermelon. Proc. Assn. Southern Agr. Workers 53: 174.
- Mohr, H.C. and M.S. Sandhu. 1975. Inheritance and morphological traits of a double recessive dwarf in watermelon, *Citrullus lanatus* (Thunb.) Mansf. J. Amer. Soc. Hort. Sci. 100: 135-137.
- 29. Navot, N., M. Sarfatti and D. Zamir. 1990. Linkage relationships of genes affecting bitterness and flesh color in watermelon. J. Hered. 81: 162-165.
- 30. Navot, N. and D. Zamir. 1986. Linkage relationships of 19 protein coding genes in watermelon. Theor. Appl. Genet. 72: 274-278.
- 31. Navot, N. and Daniel Zamir. 1987. Isozyme and seed protein phylogeny of the genus *Citrullus* (Cucurbitaceae). Plant Syst. & Evol. 156: 61-67.
- 32. Netzer, D. and C. Weintall. 1980. Inheritance of resistance to race 1 of *Fusarium oxysporum* f. sp. *niveum*. Plant Dis. 64: 863-854.
- Norton, J.D. 1979. Inheritance of resistance to gummy stem blight in watermelon. HortScience 14: 630-632.

- 34. Poole, C.F. 1944. Genetics of cultivated cucurbits. J. Hered. 35: 122-128.
- 35. Poole, C.F. and P.C. Grimball. 1945. Interaction of sex, shape, and weight genes in watermelon. J. Agr. Res. 71: 533-552.
- Poole, C.F. P.C. Grimball and D.R. Porter. 1941. Inheritance of seed characters in watermelon. J. Agr. Res. 63: 433-456.
- 37. Porter, D.R. 1937. Inheritance of certain fruit and seed characters in watermelons. Hilgardia 10: 489-509.
- 38. Provvidenti, R. 1991. Inheritance of resistance to the Florida strain of zucchini yellow mosaic virus in watermelon. HortScience 26: 407-408.
- Provvidenti, R. 1992. Cold resistance in accessions of watermelon from Zimbabwe. Cucurbit Genet. Coop. Rpt. 15: 67-68.
- 40. Provvidenti, R. 1994. Inheritance of a partial chlorophyll deficiency in watermelon activated by low temperatures at the seedling stage. HortScience 29: 1062-1063.
- 41. Provvidenti, R. 2003. Naming the gene conferring resistance to cool temperatures in watermelon. Cucurbit Genet. Coop. Rpt. 26: 31.
- 42. Ray, D.T. and J.D. Sherman. 1988. Desynaptic chromosome behavior of the *gms* mutant in watermelon. J. Hered. 79: 397-399.
- 43. Rhodes, B.B. 1986. Genes affecting foliage color in watermelon. J. Hered. 77: 134-135.
- Rhodes, B. and X. Zhang. 1995. Gene list for watermelon. Cucurbit Genetics Coop. Rpt. 18: 69-84.
- 45. Rhodes, B. and F. Dane. 1999. Gene list for watermelon. Cucurbit Genetics Coop. Rpt. 22: 61-74.
- 46. Rhodes, B.B., X.P. Zhang, V.B. Baird, and H. Knapp. 1999. A tendrilless mutant in watermelon: phenotype and inheritance. Cucurbit Genetics Coop. Rpt. 22: 28-30.
- 47. Robinson, R.W., H.M. Munger, T.W. Whitaker and G.W. Bohn. 1976. Genes of the Cucurbitaceae. HortScience 11: 554-568.
- 48. Robinson, R.W., R. Provvidenti and J.W. Shail. 1975. Inheritance of susceptibility to powdery

mildew in the watermelon. J. Hered. 66: 310-311.

- 49. Rosa, J.T. 1928. The inheritance of flower types in *Cucumis* and *Citrullus*. Hilgardia 3: 233-250.
- Saito, K., K. Inoue, R. Fukushima, and M. Noji. 1997. Genomic structure and expression analyses of serine acetyltransferase gene in *Citrullus vulgaris* (watermelon). Gene 189: 57-63.
- Shimotsuma, M. 1963. Cytogenetical studies in the genus *Citrullus*. VII. Inheritance of several characters in watermelons. Jap. J. Breeding 13: 235-240.
- Sowell, G., Jr., B.B. Rhodes and J.D. Norton. 1980. New sources of resistance to watermelon anthracnose. J. Amer. Soc. Hort. Sci. 105: 197-199.
- 53. Suvanprakorn, K. and J.D. Norton. 1980. Inheritance of resistance to anthracnose race 2 in watermelon. J. Amer. Soc. Hort. Sci. 105: 862-865.
- 54. Tanaka, T., Wimol, S. and T. Mizutani. 1995. Inheritance of fruit shape and seed size of watermelon. J. Japan. Soc. Hort. Sci. 64: 543-548.
- 55. Vashishta, R.N. and B. Choudhury. 1972. Inheritance of resistance to red pumpkin beetle in muskmelon, bottle gourd and watermelon. Proc. 3rd Intern. Symposium Sub-Trop. Hort. 1:75-81.
- 56. Warid, A. and A.A. Abd-El-Hafez. 1976. Inheritance of marker genes of leaf color and ovary shape in watermelon, *Citrullus vulgaris* Schrad. The Libyan J. Sci. 6A: 1-8.
- 57. Watts, V.M. 1962. A marked male-sterile mutant in watermelon. Proc. Amer. Soc. Hort. Sci. 81: 498-505.
- Watts, V.M. 1967. Development of disease resistance and seed production in watermelon stocks carrying the *msg* gene. Proc. Amer. Soc. Hort. Sci. 91: 579-583.
- 59. Weetman, L.M. 1937. Inheritance and correlation of shape, size, and color in the watermelon, *Citrullus vulgaris* Schrad. Iowa Agr. Expt. Sta. Res. Bul. 228: 222-256.

- 60. Wimmer, B., F. Lottspeich, I. van der Klei, M. Veenhuis, and C. Gietl. 1997. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc. Natl. Acad. Sci. USA 94: 13624-13629.
- 61. Winstead, N.N., M.J. Goode and W.S. Barham. 1959. Resistance in watermelon to *Colletotrichum lagenarium* races 1, 2, and 3. Plant Dis. Rptr. 43: 570-577.
- 62. Zamir, D., N. Navot and J. Rudich. 1984. Enzyme polymorphism in *Citrullus lanatus* and *C. colocynthis* in Israel and Sinai. Plant Syst. & Evol. 146: 163-170.
- 63. Zhang, X.P. and M. Wang. 1990. A genetic male-sterile (*ms*) watermelon from China. Cucurbit Genetics Coop. Rpt. 13: 45.
- 64. Zhang, X.P. Rhodes, B.B., H. Wang, W.C. Bridges and H.T. Skkorupska. 1994a. Genes controlling watermelon seed size.

Cucurbitaceae '94: Evaluation and Enhancement of Cucurbit Germplasm, p. 144-147 (eds. G. Lester and J. Dunlap). Gateway P&OS, Inc., Edinsburg TX.

- 65. Zhang, X.P., H.T. Skorupska and B.B. Rhodes. 1994b. Cytological expression in the male sterile *ms* mutant in watermelon. J. Heredity 85:279-285.
- 66. Zhang, X.P. 1996. Inheritance of seed size from diverse crosses in watermelon. Cucurbit Genetics Coop. Rpt. 19: 67-69.
- Zhang, X.P., B. B. Rhodes, V. Baird and H. Skorupska. 1996a. A tendrilless mutant in watermelon: phenotype and development. HortScience 31: 602 (abstract).
- 68. Zhang, X.P., B.B. Rhodes and W.C. Bridges. 1996b. Phenotype, inheritance and regulation of expression of a new virescent mutant in watermelon: juvenile albino. J. Amer. Soc. Hort. Sci. 121: 609-615.