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Introduction 

Bacterial fruit blotch (BFB) is a serious seed-borne disease 

caused by Acidovorax citrulli (13) that leads to significant 

watermelon (Citrullus lanatus) production losses (6, 8, 12). 

Although there are no watermelon cultivars with resistance to 

BFB (1), numerous studies have identified resistance sources 

(1, 2, 3, 4, 5, 6, 7, 10, 14). In one such study, watermelon 

cultigens (plant introductions and cultivars) were screened 

for fruit resistance to BFB under field conditions (3). 

Unfortunately, the most resistant cultigens were plant 

introductions with undesirable horticultural traits (3). 

Although fruit resistance screening may be simplified as 

we better understand the underlying mechanisms, 

introgression of resistance into elite cultivars and 

confirmation of resistance in other sources will likely require 

using the original screening method, which is labor intensive 

and significantly affected by environmental variation (3). 

However, in addition to method descriptions and 

observations, prior empirical variance component estimates 

provide an opportunity to optimize future resistance 

screening under similar conditions by adjusting the resource 

allocations to further mitigate extraneous variance (3).  

In this article, we calculated simulated estimates of the 

variance of a cultigen mean (𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚
2 ) (15) and broad-sense 

heritability (HB sim
2 ) using simulated allocation scenarios and 

experimentally derived variance component estimates to 

predict the efficiency of hypothetical fruit resistance 

screenings and provide a framework for optimizing future 

experiments.   

 

Methods 
In order to demonstrate optimization of future 

experiments, average variance component estimates (3) and 

scenario-dependent values for years, blocks per year (blocks), 

and replications per block (replications) were used to 

calculate HB sim
2  and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2  (Table 1) estimates over 10 

resource allocation scenarios. 

 

 

 

Results and Discussion 
In the optimization scenarios, the greatest gains were 

achieved by increasing allocations in descending order: years 

> blocks > replications, and scenarios that maximized blocks 

over years had the fastest results over time (Table 2). The 

optimum scenario would minimize 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚
2 , increasing the 

power to discriminate genotypes (15), and maximize HB sim
2 , 

improving genetic gain (utilizing narrow-sense heritability) 

(9), over the shortest time. Ultimately, the preferred metric 

depends on the research goals. Scenario 2 had the maximum 

number of years and the best HB sim
2 , 0.46, and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2 0.54, 

and scenario 4, which maximized replications, had the worst 

HB sim
2 , 0.25, and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2 1.39. Scenario 3 maximized blocks 

and had the most favorable HB sim
2 , 0.40, and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2 , 0.69, in 

the shortest time. The respective range of  HB 𝑆𝑖𝑚
2  and σ𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2  

among the more balanced scenarios, 5-10, was 0.31 to 0.45 

and 0.99 to 0.56. The HB sim
2  and σ𝐶𝑢𝑙 M 𝑠𝑖𝑚

2  of the completely 

balanced scenario, 1, was 0.39 and 0.70, respectively. 

Simulated broad-sense heritability and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚
2 were 

strongly negatively correlated, Pearson's correlation 

coefficient, r(8) = -.97, p < 0.001 (11). 

As variance components are further partitioned by adding 

more replications, blocks, and years, gains are diminishing, i.e., 

more expensive. In reality, adding years would likely be more 

expensive than adding blocks, which would be more expensive 

than adding replications. However, probably the heaviest toll 

would result from opportunity costs from long experiments 

that delay breeding decisions and research results (15). For 

example, the impractically long scenario 2 had the best 

metrics but would be the most time-expensive, incurring 

unclear costs beyond what it took to conduct the experiment. 

A more in-depth demonstration of cost analysis and allocation 

compromises to balance gains for multiple traits is given in a 

similar optimization by Swallow and Wehner (15). 

Customized to resources and experimental objectives, 

expanded optimization scenarios could be used to evaluate 

the effects of various allocations beyond the 10 scenarios 

provided here.  
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When evaluating idealized scenarios, researchers need to 

consider the severity of missing data on their outcomes. The 

simulation calculations for 3 years, 3 experiments, and 1 

replication (not shown) that matched the resource allocation 

for the actual screening experiments (3), projected 0.47 HB sim
2   

and 0.52 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚
2 . By using 2 years, 4 blocks, and 1 replication 

or 1 year, 8 blocks, and 1 replication similar metrics may have 

been achieved and time and resources saved. However, these 

simulated results are better than the realized average of 0.343 

HB sim
2  and 0.868 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2  for the actual dataset that included 

the screening experiments and additional testing (3). This 

discrepancy was because of unexpected missing data that led 

to average harmonic means of 2.6 years, 4.8 blocks, and 5.2 

replications (3), whereas, with no missing data, each cultigen 

would have been replicated at least 9 times over 9 blocks and 

3 years just for the screening experiments. Considering the 

equations for HB sim
2  and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2 , missing data adversely 

affects the metrics by decreasing the denominators for the 

cultigen interaction variances. In order to mitigate projected 

attrition and achieve their objectives while remaining within 

budget for time and resources, researchers must either 

conduct their experiments more efficiently or over-allocate 

resources, and increase costs, to compensate for missing data. 

Post hoc optimization scenarios can be used to guide future 

experiments. Of course, by using prior estimates to predict 

future experimental outcomes, as presented here, we are 

making the assumptions that our conditions are typical, future 

variance component estimates will be the same, and the 

variance components can be infinitely partitioned. Indeed, the 

value of using prior data to predict outcomes will only be 

known following actual testing and post hoc analysis. 

Naturally, this additional data can then be used to further 

refine future experiments. While inherently flawed, using 

empirical variance component estimates to shape future 

experimental design outcomes is preferable to designing 

experiments based merely on resources and observations. 

We simulated alternative resource allocation scenarios 

and calculated HB sim
2  and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2  in order to identify 

optimized testing conditions for screening for resistance to 

BFB in watermelon fruit and to illustrate a simple exercise to 

optimize useful metrics based on prior data. Scenarios 1, 3, 7, 

and 9 had favorable HB sim
2   and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2  that could be 

attained by running screening experiments for 2 years or less.  

These scenarios provide a guide for researchers and breeders 

to design more efficient experiments and trials based on 

available resources and variance component estimates. 
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Table 1. Equations for simulated broad-sense heritability (𝐇𝑩 𝑺𝒊𝒎
𝟐 ) and variance of a cultigen mean (𝝈𝑪𝒖𝒍 𝑴 𝒔𝒊𝒎

𝟐 ). 

Equation 1: HB sim
2 = 

𝜎𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛
2

𝜎𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛
2 + 

𝜎𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛 × 𝑌𝑒𝑎𝑟
2

Years
 +

𝜎
𝐵𝑙𝑜𝑐𝑘(𝑌𝑒𝑎𝑟) × 𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛
2

Years X Blocks
+ 

𝜎𝐸𝑟𝑟𝑜𝑟
2

Years × Blocks × Replications

 

 

Equation 2: 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚
2 =  

𝜎𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛 × 𝑌𝑒𝑎𝑟
2

Years
+  

𝜎𝐵𝑙𝑜𝑐𝑘(𝑌𝑒𝑎𝑟) × 𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛
2

Years X Blocks
+  

𝜎𝐸𝑟𝑟𝑜𝑟
2

Years × Blocks × Replications
  

 
Note. Average variance component estimates (3): 
𝜎𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛

2 = 0.454; 𝜎𝐶𝑢𝑙𝑡𝑖𝑔𝑒𝑛 × 𝑌𝑒𝑎𝑟
2 = 0.172; 𝜎𝐵𝑙𝑜𝑐𝑘(𝑌𝑒𝑎𝑟) × 𝑐𝑢𝑙𝑡𝑖𝑔𝑒𝑛

2  = 0.804;  𝜎𝐸𝑟𝑟𝑜𝑟
2  = 3.320. Blocks refer to blocks per year; 

replications refer to replications per block. 
 

 

Table 2. Simulated broad-sense heritability (𝐇𝑩 𝑺𝒊𝒎
𝟐 ) and variance of a cultigen mean 

(𝝈𝑪𝒖𝒍 𝑴 𝒔𝒊𝒎
𝟐 ) optimization scenarios using different allocations of eight plots over 

years, blocks per year (blocks), and replications per block (replications). 
 Allocations  Estimates 

Scenario Years Blocks Replications H𝐵 𝑆𝑖𝑚
2 z 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2 y 

1 2 2 2 0.39 0.70 

2 8 1 1 0.46 0.54 

3 1 8 1 0.40 0.69 

4 1 1 8 0.25 1.39 

5 4 2 1 0.45 0.56 

6 4 1 2 0.41 0.66 

7 2 4 1 0.43 0.60 

8 2 1 4 0.33 0.90 

9 1 4 2 0.37 0.79 

10 1 2 4 0.31 0.99 

H𝐵 𝑆𝑖𝑚
2  and 𝜎𝐶𝑢𝑙 𝑀 𝑠𝑖𝑚

2   Pearson’s correlation coefficient: -.97 (p < .001) 

zTable 1, equation 1. 
yTable 1, equation 2. 

 


