1992 Gene List for Cucurbita spp.

Cucurbit Genetics Cooperative Report 15:102-109 (article 38) 1992

Mark G. Hutton and R.W. Robinson
PetoSeed, RR2, Box 80-A Slade Lane, Bridgeton, NJ 08302 and Department of Horticultural Science, New York State Agricultural Experiment Station, Cornell University, Geneva,NY 14456

Concern has been expressed (26) about the use of the “+” symbol for the normal allele of cucurbit genes. The truly wild types does not exist for most cultivated cucurbits as it does for Drosophila. A wild or feral taxon closely related to Cucurbita pepo, such as C. texana or C. fraterna, would be inappropriate as a progenitor or wild type species for C. maxima, C. moschata, or other Cucurbita species. The cucurbit gene rules are based (31) on those for the tomato, which also lacks a wild type to typify the normal alleles for each gene. Tomato geneticists have selected the cultivar ‘Marglobe’ to represent the normal type, but the diversity of cucurbit cultivars precludes selecting only one type to represent the normal. No one cultivar for example is representative of summer squash, winter squash, pumpkins, ‘vegetable spaghetti’ and gourds of C. pepo. Instead of selecting one cultivar to represent the normal or “+” allele for each gene, it is left to the common sense of the researcher to distinguish between the normal and mutant alleles of a gene he or she names, and to choose a gene symbol corresponding with the name for the mutant allele. The “+” allele need not necessarily signify the phenotype of a putative wild ancestor, but preferably it should be that of a majority of the cultivars. Although the use of “+” is recommended, the use of upper and lower case for the first letter of symbols for dominant and recessive alleles at the same locus is acceptable.

Updated gene lists have recently been published for cucumber (29), melon (CGC 13:58-68, 1990), and watermelon (CGC 14:129-138, 1991). Lists for known genes for Cucurbita were published previously (4, 5, 6, 31). In the interest of updating and collecting information on the genetics of Cucurbita in one place, the following is a complete list of known genes. In bold characters are the genes which are maintained by the curators or which are very common in cultivars or collections. In light type are those genes which have been lost or are not yet in the curator’s collection. We hope to continue this practice and publish a complete list for the Cucurbita spp. every four years. Researchers are encouraged to send stocks for genes not listed in bold characters, new genes, and article reprints containing descriptions to the gene curators.

Please inform the Cucurbita gene curators (R.W. Robinson or Mark Hutton) of any omissions or errors in the following list of Cucurbita genes.

Gene symbol

Character

Species

Reference

Preferred Synonym

a androecious. Produces only male flowers 21
Aact-mb Aspartate aminotransferase-microbody isozyme maxima x eucadorensis 51
Aat-m Aat-m1 Aspartate aminotransfeerase mitochondria isozyme-1 maxima x eucadorensis 51
Aat-m2 Aspartate aminotransferase mitochondria isozyme-2 maxima x eucadorensis 51
Aat-p2 Aspartate aminotransferase plastid isozyme-2 maxima x eucadorensis 51
Acp Acp-1 Acid phosphatase – isozyme-1 maxima x eucadorensis 51
Acp-2 Acid phosphatase – isozyme-2 maxima x ecudorensis 51
Aldo-p Aldolase – plastid isozyme maxima x ecudorensis 50
B1 Bicolor-1. Precocious yellow fruit pigmentation; modified by Ep-1, Ep-2 and Ses-B pepo 41, 42
B2 Bicolor-2 (precocious yellow fruit) maxima 44
Bi Bitter fruit. High cucurbitacin content in fruit pepo 2, 16, 52
bl blue fruit color. Incompletely recessive to green maxima 18
Bu Bush habit. Short internodes; dominant to vine habit in young plant stage but recessive at maturity pepo, maxima 8, 40, 47
cr cream corolla. Cream to nearly white petals for cr/er, yellow for crl /+, and orange for +/+; derived from C. okeechobeensis moschata 34
cu cucurbitacin content. Reduced cucurbitacin content pepo 39
D Dark green stem. Dominant to light green stem pepo 15
Di Disc fruit shape. Dominant to spherical pepo 46
Ep-1 Extender of pigmentation-1; modifier of B1 pepo 46
Ep-2 Extender of pigmentation-2;; modifier of B1 pepo 45
Est Esterase isozyme maxima x ecudorensis 49
Fr Fruit fly (Dacus cucurbitae) resistance Maxima 25
G a,m Gynoecious sex expression foetidissima 9, 14
Gal Gal-1 β -galactosidase isozzyme-1 maxima x ecuadorensis 51
Gal-2 β -galactosidase isozyme-2 maxima x ecudorensis 51
Gb Green band on inner side of base of petal; dominant to no band pepo 10
gc green corolla, Green, leaf-like petals pepo 48
Got Got-1 Glutamine-oxaloacetate isozyme-1 maxima x ecuadorensis 51
Got-2 Glutamine-oxaloacetate isozyme-2 maxima x ecuadorensis 51
Gpi-c Gpi-c1 Glucosephosphate isomerase cytosolic isozyme-1 maxima x ecuadorensis 51
Gpi-c2 Glucosephosphate isomerase cytosolic isozyme-2 maxima x ecudorensis 51
Gr G Green rind. Dominant to buff skin of mature fruit moschata 32
Hi Hard rind inhibitor maxima 17
Hr Hard rind pepo 23
i intensifier of the cr gene for cream flowers okeechobeensis 34
I-T Inhibitor of the T gene for trifluralin resistance moschata 1
Idh Idh-1 Isocitrate dehydrogenase isozyme-1 pepo 7, 20
Idh-2 Isocitrate dehydrogenase isozyme-2 pepo 7, 20
Idh-3 Isocitrate dehydrogenase isozyme-3 pepo 7, 20
l c light fruit color. Uniform light intensity of fruit pigmentation; modified by St pepo 15, 27, 41
l-2 light pigmentation of fruit-2 pepo 27
Lap Leucine aminopeptidase isozyme maxima x ecuadorensis 49
lo l lobed leaves; recessive maxima 11
Lo-2 lobed leaves-2; dominant equadorensis 17
lt leafy tendril. Tendrils with laminae pepo 36
ly light yellow corolla. Recessive orange yellow pepo 36
M Mottled leaves. Silver gray areas in axils of leaf veins pepo, maxima, moschata 3, 35, 38
Mdh-m Mdh-m1 Malate dehydrogenase mitochondria isozyme-1 maxima x ecuadorensis 51
Mdh-m2 Malate dehydrogenase mitochondria isozyme-2 maxima x ecuadorensis 51
Mdh-c2 Malate dehydrogenase cytosolic isozyme-2 maxima x ecuadorensis 51
ms-1 ms1 male sterile-1. Male flowers abort before anthesis pepo 13
ms-2 ms2 male sterile-2. Male flowers abort pepo 13
n naked seeds. Lacking a lignified seed coat pepo 16, 37
Per Per-1 Peroxidase isozyme-1 maxima x ecuadorensis 51
Per-3 Peroxidase isozyme-3 maxima x ecuadorensis 51
Pgi Pgi-1 Phosphoglucase isomerase isozyme-1 pepo 7 , 20
Pgi-2 Phosphoglucase isomerase isozyme-2 pepo 7, 20
Pgi-3 Phosphoglucase isomerase isozyme-3 pepo 7, 20
Pgm-c2 Phosphoglucomutase cytosolic isozyme-2 maxima x ecuadorensis 51
Pgm-p Phosphoglucomutase plastid isozyme maxima x ecuadorensis 51
Pm Powdery mildew-resistance. Resistance to Sphaerotheca fuliginea ludelliana 30
r reecessive white. White fruit color pepo 15
Rd Red skin. Red external fruit color; dominant to green, white, yellow and gray maxima 22
ro rosette leaf. Lower lobes of leaves slightly spiraled pepo 23
s sterile. Male flowers small, without pollen; female flower sterile maxima 19
Ses-B Selective suppression of gene B1 pepo 43
Skdh Shikimate dehydrogenase isozyme maxima x ecuadorensis 51
Sod Sod-1 Superoxide dismutase isozyme-1 maxima x ecudorensis 51
St lst Striped fruit. Longitudinal stripes on fruit, conspicuous if l but inconspicuous if l+ pepo 35
T Trifluralin resistance. Dominant to susceptibility to the herbicide; modified by I-T moschata 1
Tpi-c2 Triphosphatase isomerase cytosolic isozyme-2 maxima x ecuadorensis 51
Tpi-p2 Triosephosphatase isomerase plastid isozyme-2 maxima x ecuadorensis 51
v virescent. Yellow-green young leaves maxima 12
W White fruit. Dominant to green mature fruit,partially epistatic to Y pepo 47
Wf White flesh. dominant to cream flesh color pepo 47
Wt Warty fruit. Dominant to smooth pepo 47
Y Yellow fruit color. Domimnatn to green pepo 47
Ygp Yellow-green placenta. Dominant to yellow placental color pepo 10
ys yellow seedling. Lacking chlorophyll; lethal pepo 23
zym zucchini yellow mosaic virus resistance ecuadorensis, moschata; not yet established if these genes are allelic. 24, 28, 33

*Isozyme nomenclature follows a modified form (22) previously described by Richmond (15) and Gottlieb (3).

Literature Cited

  1. Adeoye, A.A. and D.P Coyne. 1981. Inheritance of resistance to trifluralin toxicity in Cucurbita moschata Poir, HortScience 16:774-775.
  2. Contardi, H.G. 1939. Estudios geneticos en “Cucurbita” y consideraciones agronomicas. Physis 18:331-347.
  3. Coyne, D.P. 1970. Inheritance of mottle-leaf in Cucurbita moschata Poit. HortScience 5:226-227.
  4. Cucurbit Gene List Committee. 1979. New Genes for the Cucurbitaceae. Cucurbit Genetics Coop. Rpt. 2:49-53.
  5. Cucurbit Gene List Committee. 1982. Update of cucurbit gene list and nomenclature rules. Cucurbit Genetics Coop. Rpt. 5:62-66.
  6. Cucurbit Gene List Committee. 1988. Gene list for Cucurbita spp. Cucurbit Genetics Coop. Rpt. 11:96-103.
  7. Decker, D.S. 1985. Numerical analysis of variation in Cucurbita pepo. Econ. Bot. 39:300-309.
  8. Denna, D.W. and H.M. Munger. 1963. Morphology of the bush and vine habits and the allelism of the bush genes in Cucurbita maxima and C. pepo squash. Proc. Amer. Soc. Hort. Sci. 82:370-377.
  9. Dossey, B.F., W.P. Bemis and J.C. Scheerens. 1981. Genetic control of gynoecy in the buffalo gourd. J. Heredity 72:355-356.
  10. Dutta, L.P. and P. Nath. 1972. Inheritance of flower and fruit characters in squash, Cucurbita pepo L. Tropical Hort. 1:69-74.
  11. Dyutin, K.E. 1980. (Spontaneous mutant of Cucurbita maxima Duch. Squash with lobed leaves). Genetika 16:176-178. (In Russian)
  12. Dyutin, K.E. 1981. (Inheritance of yellow-green coloration of the young leaves in Cucurbita maxima Duch.). Tsitologiya i Genetika 15(5):81-82. (In Russian)
  13. Eisa, H.M. and H,M, Munger. 1968. Male sterility in Cucurbita pepo. Proc. Amer. Soc. Hort. Sci. 92-473-479.
  14. Fulks, B.K., J.C. Scheerens and W. P. Bemis. 1979. Sex expression in Cucurbita foetidissima HBK. Cucurbit Genetics Coop. Rpt. 2L36.
  15. Globerson, D. 1969. The inheritance of white fruit and stem color in summer squash. Cucurbita pepo L. Euphytica 18:249-255.
  16. Grebenscikov, I. 1954. Notulae cucurbitologicae. I. Zur Vererbung der Bitterkeit and Kurtzriebigkeit bei Cucurbita pepo L. Kulturpflanze 2:145-154.
  17. Herrington, M.E. and J.P. Brown. 1988. Inheritance of leaf and fruit characteristics in Cucurbita maxima Duch cv. Queensland Blue X C. ecuadorensis Cutler and Whitaker. Queensland J. Agr. Animal Sci. 45:45-48.
  18. Hutchins, A.E. 1935. The interaction of blue and green color factors in Hubbard squash. Proc. Amer. Soc. HOrt. Sci. 33:514.
  19. Hutchins, A.E. 1944. A male and female sterile variant in squash, cucurbita maxima Duch. Proc. Amer. Soc. Hort. Sci. 44:484-496.
  20. Kirkpatrick, K.J., D.S. Decker and H.D. Wilson. 1985. Allozyme differentiation in the cucurbita pepo complex: C. pepo var. medullosa vs. C. texana. Exon Bot. 39:289-299.
  21. Kubicki, B. 1970. androeious strains of Cucurbita pepo L. Genet. Polonica 11:45-51.
  22. Lotsy, J.P. 1920. Cucurbita strijdvragen. II. Eigen onderzoekingen. Genetica 2:1-21.
  23. Mains, E.B. 1950. Inheritance in Cucurbita pepo. Papers Mich. Acad, Sci. Arts Letters 36:27-30.
  24. Munger, H.M. and R. Provvidenti. 1987. Inheritance of resistance to zucchini yellow mosaic virus in Cucurbita moschata. Cucurbit Genetics Coop Rpt. 10:80-81.
  25. Nath, P., O.P. Dutta, S. Velayudhan and K.R.M. Swamy. 1976. Inheritance of resistance to fruit fly in pumpkin. Sabrao J. 8:117-119.
  26. Paris, H.S. 1989. List, description and interactions of the genes affecting fruit color in Cucurbita pepo. Cucurbit Genetics Coop. Rept. 12:72-74.
  27. Paris, H.S. and H. Nerson. 1986. Genes for intense pigmentation of squash. J. Hered. 77:403-409.
  28. Paris, H.S., S. Cohen, Y. Burger and R. Yoseph. 1988. Single gene resistance to zucchini mosaic virus in Cucurbita moschata. Euphytica 37:27-29.
  29. Pierce, L.K. and T.C. Werner. 1990. Review of genes and linkage groups in cucumber. HortScience 25:605-615
  30. Rhodes, A.M. 1964. Inheritance of powdery mildew resistance in the genus Cucurbita. Plant Dis. Rptr, 48:54-55.
  31. Robinson, RW., H.M. Munger, T.W. Whitaker and G.W. Bohn. 1976. genes of the Cucurbitaceae. HortScience 11:554-568.
  32. Robinson, RW., 1987. Inheritance of fruit skin color in Cucurbita moschata. Cucurbit Genetics Coop. Rpt. 10:84.
  33. Robinson, R.W., N.F. Weeden, and R. Provvidenti. 1988. Inheritance of resistance to zucchini yellow mosaic virus in the interspecific cross Cucurbita maxima x C. ecuadorensis. Cucurbit Genetics Coop, Rpt. 11:74-75.
  34. Roe, N.E., and W.P. Bemis. 1977. Corolla color in Cucurbita. J. Heredity 68:193-194.
  35. Scarchuk, J. 1954. Fruit and leaf characters in summer squash. J. Heredity 45:295-297.
  36. Scarchuk, J. 1974. Inheritance of light yellow corolla and leafy tendrils in gourd (Cucurbita pepo var. ovifera Alef.). HortScience 9:464.
  37. Schoniger, G. 1952. Vorlaufige Mitteilung uber das Verhalten der Testa und Farbgene bei versheidenen Kreuzungen innerhalb der Kurbisart Cucurbita pepo L. Zuchter 22:316-337.
  38. Scott, D.H. and M.E. Riner. 1946. A mottled leaf character in winter squash. J. Heredity 37:27-28.
  39. Sharma, G.C. and C.V. Hall. 1971. Cucurbitacin B. and total sugar inheritance in Cucurbita pepo related to spotted cucumber beetle feeding. J. Amer. Soc. HOrt. Sci. 96:750-754.
  40. Shifriss, O. 1947. Developmental reversal of dominance in Cucurbita pepo. roc. Amer. Soc. HOrt. Sci. 50:330-346.
  41. Shifriss. O. 1955. Genetics and origin of the bicolor gourds. J. Heredity 46:213-222.
  42. Shifriss, O. 1966. Behavior of gene B in Cucurbita. Veg. Improvement Newsletter 8:7-8.
  43. Shifriss. O. 1982. Identification of a selective suppressor gene in Cucurbita pepo L. HortScience 17:637-638.
  44. Shifriss, O. 1989. Relationship between the B genes of two Cucurbita species, II. Cucurbit Genetics Coop. Rpt. 12:75-78.
  45. Shifriss. O. and H.S. Paris. 1981. Identification of modifier genes affecting the extent of precocious fruit pigmentation in Cucurbita pepo L. J. Amer. Soc. Hort. Sci. 106:653-660.
  46. Sinott, E.W. 1922. Inheritance of fruit shape in Cucurbita pepo L. Bot. Gaz. 74:95-103.
  47. Sinnott, E.W. and G.B. Durham. 1922. Inheritance in the summer squash. J. Heredity 13:177-186.
  48. Superak, T.H. 1987. A green corolla mutant in Cucurbita pepo. Cucurbit Genetics Coop. Rpt. 10:103.
  49. Wall, J.R. and T.W. Whitaker. 1971. Genetic control of leucine amniopeptidase and esterase isozymes in the interspecific cross Cucurbita ecuadorensis x C. maxima. Biochem. Genet. 5:223-229.
  50. Weeden, N.F., R.W. Robinson and F. Ignart. 1984. Linkage between an isozyme locus and one of the genes controlling resistance to watermelon mosaic virus 2 in Cucurbita ecuadorensis. Cucurbit Genetics Coop. Rpt. 7:86.
  51. Weeden, N.F. and R.W. Robinson. 1986. Allozyme segregation ratios in the interspecific cross Cucurbita maxima x C. Ecuadorenhsis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure. Genetics 114:593-609.
  52. Whitaker, T.W. 1951. A species cross in Cucurbita. J. Heredity 42:65-69.

It is hoped that scientists will consult the above list as well as the rules of gene nomenclature for the Cucurbitaceae (5, 31) before choosing a gene name and symbol. Thus, inadvertent duplication of gene names and symbols will be prevented. The rules of gene nomenclature were adopted in order to provide guidelines for naming and symbolizing genes previously reported and those which will be reported in the future. Scientists are urged to contact members of the Gene List committee regarding questions in interpreting the nomenclature rules and in naming and symbolizing new genes.

Gene List Committee:

  • Cucumber : T.C. Wehner
  • Muskmelon : M. Pitrat
  • Watermelon : W.R. Henderson
  • Cucurbita spp. : R.W. Robinson, M.G. Hutton
  • Other genera : R.W. Robinson