2001 Gene List for Cucumber

Jiahua Xie and Todd C. Wehner
Department of Horticultural Science, North Carolina State University

This is the latest version of the gene list for cucumber (Cucumis sativus L.). Complete lists and updates of genes for have been published previously (Pierce and Wehner, 1989; Robinson et al., 1976; Robinson et al., 1982; Wehner, 1993; Wehner and Staub, 1997). For the first time, this list includes genes that have been cloned from different plant tissues of cucumber. The genes on the 2001 list are of ten categories as follows: seedling markers, stem mutants, leaf mutants, flower mutants, fruit type mutants, fruit color mutants, resistance genes (mostly to diseases), protein (isozyme) variants, DNA (RFLPs and RAPDs) markers (Table 1), and cloned genes (Table 2).
Revisions to the 1997 cucumber gene list include the addition of nine genes that have been reported during past 5 years, including: bi-2, mj, msm, Prsv-2, rc-2, wmv-2, wmv-3, wmv-4, and zym-Dina. Six genes for virus resistance (mwm, zym, Prsv-2, wmv-2, wmv-3, and wmv-4) come from one inbred TMG-1.
Genes that have been published in previous lists but modified in this list are zymv (renamed zym, and then zym-TMG1 to distinguish it from zym-Dina). The gene mwm published in the literature may be the same as zym-TMG1. We also corrected the symbol for the flower mutant, male sterile-2 pollen sterile, ms-2(PS) (Zhang et al., 1994), with the superscript in parentheses to indicate an indistinguishable allele.
Isozyme variant nomenclature for this gene list follows the form according to Staub et al. (Staub et al., 1985), such that loci coding for enzymes (e.g. glutamine dehydrogenase, G2DH) are designated as abbreviations, where the first letter is capitalized (e.g. G2dh). If an enzyme system is conditioned by multiple loci, then those are designated by hyphenated numbers, which are numbered from most cathodal to most anodal and enclosed in parentheses. The most common allele of any particular isozyme is designated 100, and all other alleles for that enzyme are assigned a value based on their mobility relative to that allele. For example, an allele at locus 1 of FDP (fructose diphosphatase) which has a mobility 4 mm less that of the most common allele would be assigned the designation Fdp(1)-96.
RFLP marker loci were identified as a result of digestion of cucumber DNA with DraI, EcoRI, EcoRV, or HindIII (Kennard et al., 1994). Partial-genomic libraries were constructed using either PstI-digested DNA from the cultivar Sable and from EcoRV-digested DNA from the inbred WI 2757. Derived clones were hybridized to genomic DNA and banding patterns were described for mapped and unlinked loci (CsC482/H3, CsP314/E1, and CsP344/E1, CsC477/H3, CsP300/E1).
Clones are designated herein as CsC = cDNA, CsP = PstI-genomic, and CsE = EcoRI-genomic. Lower-case a or b represent two independently-segregating loci detected with one probe. Lower-case s denotes the slowest fragment digested out of the vector. Restriction enzymes designated as DI, DraI; EI, EcoRI; E5, EcoRV; and H3, HindIII. Thus, a probe identified as CsC336b/E5 is derived from a cDNA library (from ‘Sable’) which was restricted using the enzyme EcoRV to produce a clone designated as 336 which displayed two independently segregating loci one of which is b. Clones are available in limited supply from Jack E. Staub.
RAPD marker loci were identified using primer sequences from Operon Technologies (OP; Alameda, California, U.S.A.) and the University of British Columbia (Vancouver, BC, Canada). Loci are identified by sequence origin (OP or BC), primer group letter (e.g., A), primer group array number (1-20), and locus (a, b, c, etc.) (Kennard et al., 1994). Information regarding unlinked loci can be obtained from Jack E. Staub.
Because of their abundance, common source (two mapping populations), and the accessibility of published information on their development
(Kennard et al., 1994) DNA marker loci are not included in Table 1, but are listed below.
The 60 RFLP marker loci from mapping cross Gy 14 x PI 183967 (Kennard et al., 1994): CsP129/E1, CsC032a/E1, CsP064/E1, CsP357/H3, CsC386/E1, CsC365/E1, CsP046/E1, CsP347/H3, CsC694/E5, CsC588/H3, CsC230/E1, CsC593/D1, CsP193/H3, CsP078s/H3, CsC581/E5, CsE084/E1, CsC341/H3, CsP024/E1, CsP287/H3, CsC629/H3, CsP225s/E1, CsP303/H3, CsE051/H3, CsC366a/E5, CsC032b/E1, CsP056/H3, CsC378/E1, CsP406/E1, CsP460/E1, CsE060/E1, CsE103/E1, CsP019/E1, CsP168/D1, CsC560/H3, CsP005/E1, CsP440s/E1, CsP221/H3, CsC625/E1, CsP475s/E1, CsP211/E1, CsP215/H3, CsC613/E1, CsC029/H3, CsP130/E1, CsC443/H3, CsE120/H3, CsE031/H3, CsC366b/E5, CsC082/H13, CsP094/H3, CsC362/E1, CsP441/E1, CsP280/H3, CsC137/H3, CsC558/H3, CsP037a/E1, CsP476/H3, CsP308/E1, CsP105/E1, and Csc166/E1.
The 31 RFLP marker loci from mapping cross Gy 14 x PI 432860 (Kennard et al., 1994): CsC560/D1, CsP024/E5, CsP287/H3, CsC384/E5, CsC366/E5, CsC611/D1, CsP055/D1, CsC482/H3, CsP019/E1, CsP059/D1, CsP471s/H13, CsC332/E5, CsP056/H3, CsC308/E5, CsP073/E5, CsP215/H3, CsC613/D1, CsP266/D1, CsC443/H3, CsE031/E1, CsE120/H3, CsE063/E1, CsP444/E1, CsC612/D1, Cs362/E1, CsP280/H3, CsC558/H3, CsP008/D1, CsP308/E1, CsC166/E1, and CsP303/H3.
The 20 RAPD marker loci from mapping cross Gy 14 x PI 432860 (Kennard et al., 1994): OPR04, OPW16, OPS17, OPE13a, OPN06, OPN12, OPP18b, BC211b, OPN04, OPA10, OPE09, OPT18, OPA14b, OPU20, BC460a, OPAB06, OPAB05, OPH12, OPA14a, and BC211a.
In addition to the isozymes, RFLPs and RAPDs, nearly 100 cloned genes are listed here (Table 2).
Researchers are encouraged to send reports of new genes, as well as seed samples to the cucumber gene curator (Todd C. Wehner), or to the assistant curators (Jack E. Staub and Richard W. Robinson). Please inform us of omissions or errors in the gene list. Scientists should consult the list as well as the rules of gene nomenclature for the Cucurbitaceae (Robinson et al., 1976; Robinson et al., 1982) before choosing a gene name and symbol. That will avoid duplication of gene names and symbols. The rules of gene nomenclature were adopted in order to provide guidelines for naming and symbolizing genes. Scientists are urged to contact members of the gene list committee regarding rules and gene symbols.

Read more to view Table 1. The non-molecular genes of cucumber.